Nuprl Lemma : mcopower_wf

s:DSet. ∀g:AbMon.  (MCopower(s;g) ∈ 𝕌')


Proof




Definitions occuring in Statement :  mcopower: MCopower(s;g) all: x:A. B[x] member: t ∈ T universe: Type abmonoid: AbMon dset: DSet
Definitions unfolded in proof :  mcopower: MCopower(s;g) all: x:A. B[x] member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] dset: DSet so_lambda: λ2x.t[x] abmonoid: AbMon mon: Mon subtype_rel: A ⊆B so_apply: x[s] prop: uimplies: supposing a monoid_hom: MonHom(M1,M2)
Lemmas referenced :  mcopower_sig_wf all_wf set_car_wf monoid_hom_p_wf mcopower_mon_wf mcopower_inj_wf abmonoid_wf monoid_hom_wf uni_sat_wf grp_car_wf mcopower_umap_wf subtype_rel_dep_function equal_wf compose_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut setEquality lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productEquality isectElimination setElimination rename lambdaEquality because_Cache applyEquality cumulativity universeEquality instantiate functionEquality independent_isectElimination

Latex:
\mforall{}s:DSet.  \mforall{}g:AbMon.    (MCopower(s;g)  \mmember{}  \mBbbU{}')



Date html generated: 2016_05_16-AM-08_13_01
Last ObjectModification: 2015_12_28-PM-06_10_01

Theory : polynom_1


Home Index