Nuprl Lemma : mcopower_properties

s:DSet. ∀g:AbMon. ∀c:MCopower(s;g).
  ((∀j:|s|. IsMonHom{g,c.mon}(c.inj j))
  ∧ (∀h:AbMon. ∀f:|s| ⟶ MonHom(g,h).
       (c.umap f) !v:|c.mon| ⟶ |h|. (IsMonHom{c.mon,h}(v) ∧ (∀j:|s|. ((f j) (v (c.inj j)) ∈ (|g| ⟶ |h|))))))


Proof




Definitions occuring in Statement :  mcopower: MCopower(s;g) mcopower_umap: m.umap mcopower_inj: m.inj mcopower_mon: m.mon compose: g uni_sat: !x:T. Q[x] all: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) monoid_hom_p: IsMonHom{M1,M2}(f) abmonoid: AbMon grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B mcopower: MCopower(s;g) uall: [x:A]. B[x] member: t ∈ T abmonoid: AbMon mon: Mon subtype_rel: A ⊆B sq_stable: SqStable(P) implies:  Q squash: T dset: DSet so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a monoid_hom: MonHom(M1,M2) prop: monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f)
Lemmas referenced :  sq_stable__equal sq_stable__all sq_stable__and sq_stable__uni_sat squash_wf compose_wf equal_wf all_wf monoid_hom_p_wf subtype_rel_dep_function mcopower_umap_wf grp_car_wf dset_wf mcopower_wf abmonoid_wf monoid_hom_wf set_car_wf mcopower_inj_wf mcopower_mon_wf sq_stable__monoid_hom_p
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality dependent_functionElimination hypothesis applyEquality lambdaEquality because_Cache sqequalRule independent_functionElimination introduction productElimination imageMemberEquality baseClosed imageElimination independent_pairFormation functionEquality independent_isectElimination productEquality isect_memberEquality independent_pairEquality axiomEquality

Latex:
\mforall{}s:DSet.  \mforall{}g:AbMon.  \mforall{}c:MCopower(s;g).
    ((\mforall{}j:|s|.  IsMonHom\{g,c.mon\}(c.inj  j))
    \mwedge{}  (\mforall{}h:AbMon.  \mforall{}f:|s|  {}\mrightarrow{}  MonHom(g,h).
              (c.umap  h  f)  =  !v:|c.mon|  {}\mrightarrow{}  |h|
                                                (IsMonHom\{c.mon,h\}(v)  \mwedge{}  (\mforall{}j:|s|.  ((f  j)  =  (v  o  (c.inj  j)))))))



Date html generated: 2016_05_16-AM-08_13_04
Last ObjectModification: 2016_01_16-PM-11_41_55

Theory : polynom_1


Home Index