Nuprl Lemma : rng_from_grp_wf
∀g:GrpSig. ∀times:|g| ⟶ |g| ⟶ |g|. ∀one:|g|. ∀div:|g| ⟶ |g| ⟶ (|g|?).  (rng_from_grp(g;times;one;div) ∈ RngSig)
Proof
Definitions occuring in Statement : 
rng_from_grp: rng_from_grp(g;times;one;div)
, 
all: ∀x:A. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
rng_sig: RngSig
, 
grp_car: |g|
, 
grp_sig: GrpSig
Definitions unfolded in proof : 
rng_from_grp: rng_from_grp(g;times;one;div)
, 
rng_sig: RngSig
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
grp_car_wf, 
grp_eq_wf, 
grp_le_wf, 
grp_op_wf, 
grp_id_wf, 
grp_inv_wf, 
unit_wf2, 
bool_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
dependent_pairEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
functionEquality, 
unionEquality, 
productEquality, 
cumulativity
Latex:
\mforall{}g:GrpSig.  \mforall{}times:|g|  {}\mrightarrow{}  |g|  {}\mrightarrow{}  |g|.  \mforall{}one:|g|.  \mforall{}div:|g|  {}\mrightarrow{}  |g|  {}\mrightarrow{}  (|g|?).
    (rng\_from\_grp(g;times;one;div)  \mmember{}  RngSig)
Date html generated:
2016_05_16-AM-08_14_41
Last ObjectModification:
2015_12_28-PM-06_09_19
Theory : polynom_1
Home
Index