Nuprl Lemma : mset_inc
∀g:OCMon. (MSet{g↓set} ⊆r MSet{g↓oset})
Proof
Definitions occuring in Statement : 
mset: MSet{s}
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
oset_of_ocmon: g↓oset
, 
ocmon: OCMon
, 
dset_of_mon: g↓set
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
oset_of_ocmon: g↓oset
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
mset_wf, 
dset_of_mon_wf, 
abdmonoid_dmon, 
ocmon_subtype_abdmonoid, 
subtype_rel_transitivity, 
ocmon_wf, 
abdmonoid_wf, 
dmon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
isectElimination, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}g:OCMon.  (MSet\{g\mdownarrow{}set\}  \msubseteq{}r  MSet\{g\mdownarrow{}oset\})
Date html generated:
2016_05_16-AM-08_25_49
Last ObjectModification:
2015_12_28-PM-06_38_35
Theory : polynom_3
Home
Index