Nuprl Lemma : mset_inc

g:OCMon. (MSet{g↓set} ⊆MSet{g↓oset})


Proof




Definitions occuring in Statement :  mset: MSet{s} subtype_rel: A ⊆B all: x:A. B[x] oset_of_ocmon: g↓oset ocmon: OCMon dset_of_mon: g↓set
Definitions unfolded in proof :  all: x:A. B[x] subtype_rel: A ⊆B member: t ∈ T oset_of_ocmon: g↓oset uall: [x:A]. B[x] guard: {T} uimplies: supposing a
Lemmas referenced :  mset_wf dset_of_mon_wf abdmonoid_dmon ocmon_subtype_abdmonoid subtype_rel_transitivity ocmon_wf abdmonoid_wf dmon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation lambdaEquality sqequalHypSubstitution sqequalRule hypothesisEquality cut lemma_by_obid dependent_functionElimination thin isectElimination applyEquality hypothesis instantiate independent_isectElimination

Latex:
\mforall{}g:OCMon.  (MSet\{g\mdownarrow{}set\}  \msubseteq{}r  MSet\{g\mdownarrow{}oset\})



Date html generated: 2016_05_16-AM-08_25_49
Last ObjectModification: 2015_12_28-PM-06_38_35

Theory : polynom_3


Home Index