Nuprl Lemma : oal_fabmon_wf

s:LOSet. (oal_fabmon(s) ∈ FAbMon(s))


Proof




Definitions occuring in Statement :  oal_fabmon: oal_fabmon(s) free_abmonoid: FAbMon(S) all: x:A. B[x] member: t ∈ T loset: LOSet
Definitions unfolded in proof :  oal_fabmon: oal_fabmon(s) all: x:A. B[x] member: t ∈ T loset: LOSet poset: POSet{i} qoset: QOSet
Lemmas referenced :  fabmon_of_nat_mcp_wf oal_omcp_wf int_add_grp_wf2 loset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis

Latex:
\mforall{}s:LOSet.  (oal\_fabmon(s)  \mmember{}  FAbMon(s))



Date html generated: 2016_05_16-AM-08_28_22
Last ObjectModification: 2015_12_28-PM-06_40_58

Theory : polynom_4


Home Index