Nuprl Lemma : oal_fabmon_wf
∀s:LOSet. (oal_fabmon(s) ∈ FAbMon(s))
Proof
Definitions occuring in Statement : 
oal_fabmon: oal_fabmon(s)
, 
free_abmonoid: FAbMon(S)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
loset: LOSet
Definitions unfolded in proof : 
oal_fabmon: oal_fabmon(s)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
Lemmas referenced : 
fabmon_of_nat_mcp_wf, 
oal_omcp_wf, 
int_add_grp_wf2, 
loset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis
Latex:
\mforall{}s:LOSet.  (oal\_fabmon(s)  \mmember{}  FAbMon(s))
Date html generated:
2016_05_16-AM-08_28_22
Last ObjectModification:
2015_12_28-PM-06_40_58
Theory : polynom_4
Home
Index