Nuprl Lemma : oal_omcp_wf

s:LOSet. ∀g:OGrp.  (oal_omcp{s,g} ∈ MCopower(s;g↓hgrp))


Proof




Definitions occuring in Statement :  oal_omcp: oal_omcp{s,g} mcopower: MCopower(s;g) all: x:A. B[x] member: t ∈ T hgrp_of_ocgrp: g↓hgrp ocgrp: OGrp loset: LOSet
Definitions unfolded in proof :  oal_omcp: oal_omcp{s,g} all: x:A. B[x] member: t ∈ T mcopower: MCopower(s;g) uall: [x:A]. B[x] subtype_rel: A ⊆B ocmon: OCMon abmonoid: AbMon mon: Mon prop: mcopower_sig: mcopower_sig{i:l}(s;g) guard: {T} loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set hgrp_of_ocgrp: g↓hgrp grp_id: e pi2: snd(t) grp_car: |g| oal_hgp: oal_hgp(s;g) and: P ∧ Q cand: c∧ B mcopower_mon: m.mon mcopower_inj: m.inj monoid_hom_p: IsMonHom{M1,M2}(f) oal_mon: oal_mon(a;b) grp_op: * mcopower_umap: m.umap so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a monoid_hom: MonHom(M1,M2)
Lemmas referenced :  ocgrp_wf loset_wf hgrp_of_ocgrp_wf2 ocmon_wf abmonoid_properties mon_wf comm_wf grp_car_wf grp_op_wf oal_hgp_wf2 oal_inj_wf ocmon_subtype_abdmonoid set_car_wf oal_umap_wf oalist_wf dset_wf abmonoid_wf oal_hgp_wf monoid_hom_wf hgrp_of_ocgrp_wf oal_inj_mon_hom oal_umap_char_a all_wf monoid_hom_p_wf mcopower_mon_wf mcopower_inj_wf uni_sat_wf mcopower_umap_wf subtype_rel_dep_function equal_wf compose_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut sqequalHypSubstitution hypothesis lemma_by_obid dependent_set_memberEquality isectElimination thin hypothesisEquality applyEquality lambdaEquality setElimination rename equalityTransitivity equalitySymmetry setEquality cumulativity dependent_pairEquality dependent_functionElimination because_Cache functionEquality universeEquality productEquality independent_pairFormation instantiate independent_isectElimination

Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.    (oal\_omcp\{s,g\}  \mmember{}  MCopower(s;g\mdownarrow{}hgrp))



Date html generated: 2016_05_16-AM-08_23_14
Last ObjectModification: 2015_12_28-PM-06_26_18

Theory : polynom_2


Home Index