Nuprl Lemma : oal_inj_mon_hom

a:LOSet. ∀b:AbDMon. ∀k:|a|.  IsMonHom{b,oal_mon(a;b)}(λv.inj(k,v))


Proof




Definitions occuring in Statement :  oal_inj: inj(k,v) oal_mon: oal_mon(a;b) all: x:A. B[x] lambda: λx.A[x] monoid_hom_p: IsMonHom{M1,M2}(f) abdmonoid: AbDMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) oal_mon: oal_mon(a;b) grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) grp_id: e infix_ap: y all: x:A. B[x] and: P ∧ Q uall: [x:A]. B[x] member: t ∈ T abdmonoid: AbDMon dmon: DMon mon: Mon loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet implies:  Q squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q oal_nil: 00 top: Top
Lemmas referenced :  grp_car_wf set_car_wf abdmonoid_wf loset_wf lookups_same_a oal_inj_wf grp_op_wf oal_merge_wf2 equal_wf squash_wf true_wf lookup_oal_inj lookup_merge iff_weakening_equal mon_when_thru_op iabmonoid_subtype_imon abmonoid_subtype_iabmonoid abdmonoid_abmonoid subtype_rel_transitivity abmonoid_wf iabmonoid_wf imon_wf set_eq_wf infix_ap_wf mon_when_wf bool_wf grp_id_wf oal_nil_wf lookup_nil_lemma mon_when_of_id
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation independent_pairFormation isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality isect_memberEquality axiomEquality because_Cache dependent_functionElimination applyEquality independent_functionElimination lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination instantiate voidElimination voidEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.    IsMonHom\{b,oal\_mon(a;b)\}(\mlambda{}v.inj(k,v))



Date html generated: 2017_10_01-AM-10_04_43
Last ObjectModification: 2017_03_03-PM-01_07_54

Theory : polynom_2


Home Index