Nuprl Lemma : oal_inj_mon_hom
∀a:LOSet. ∀b:AbDMon. ∀k:|a|.  IsMonHom{b,oal_mon(a;b)}(λv.inj(k,v))
Proof
Definitions occuring in Statement : 
oal_inj: inj(k,v)
, 
oal_mon: oal_mon(a;b)
, 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
abdmonoid: AbDMon
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
oal_mon: oal_mon(a;b)
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
grp_id: e
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
mon: Mon
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
oal_nil: 00
, 
top: Top
Lemmas referenced : 
grp_car_wf, 
set_car_wf, 
abdmonoid_wf, 
loset_wf, 
lookups_same_a, 
oal_inj_wf, 
grp_op_wf, 
oal_merge_wf2, 
equal_wf, 
squash_wf, 
true_wf, 
lookup_oal_inj, 
lookup_merge, 
iff_weakening_equal, 
mon_when_thru_op, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
abdmonoid_abmonoid, 
subtype_rel_transitivity, 
abmonoid_wf, 
iabmonoid_wf, 
imon_wf, 
set_eq_wf, 
infix_ap_wf, 
mon_when_wf, 
bool_wf, 
grp_id_wf, 
oal_nil_wf, 
lookup_nil_lemma, 
mon_when_of_id
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
dependent_functionElimination, 
applyEquality, 
independent_functionElimination, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
instantiate, 
voidElimination, 
voidEquality
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.    IsMonHom\{b,oal\_mon(a;b)\}(\mlambda{}v.inj(k,v))
Date html generated:
2017_10_01-AM-10_04_43
Last ObjectModification:
2017_03_03-PM-01_07_54
Theory : polynom_2
Home
Index