Nuprl Lemma : oal_hgp_wf

s:LOSet. ∀g:OGrp.  (oal_hgp(s;g) ∈ GrpSig)


Proof




Definitions occuring in Statement :  oal_hgp: oal_hgp(s;g) all: x:A. B[x] member: t ∈ T ocgrp: OGrp grp_sig: GrpSig loset: LOSet
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] oal_hgp: oal_hgp(s;g) grp_sig: GrpSig subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  hgrp_of_ocgrp_wf2 set_car_wf oalist_wf ocmon_subtype_abdmonoid set_eq_wf oal_ble_wf ocgrp_subtype_abdgrp set_car_inc oal_merge_wf2 oal_nil_wf bool_wf ocgrp_wf loset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_pairEquality dependent_functionElimination equalityTransitivity equalitySymmetry applyEquality sqequalRule because_Cache lambdaEquality functionEquality productEquality cumulativity

Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.    (oal\_hgp(s;g)  \mmember{}  GrpSig)



Date html generated: 2016_05_16-AM-08_22_21
Last ObjectModification: 2015_12_28-PM-06_25_01

Theory : polynom_2


Home Index