Nuprl Lemma : oal_ble_wf
∀s:LOSet. ∀g:AbDGrp. ∀ps,qs:|oal(s;g)|.  (ps ≤≤b qs ∈ 𝔹)
Proof
Definitions occuring in Statement : 
oal_ble: ps ≤≤b qs, 
oalist: oal(a;b), 
bool: 𝔹, 
all: ∀x:A. B[x], 
member: t ∈ T, 
abdgrp: AbDGrp, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
squash: ↓T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
uimplies: b supposing a, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
mon: Mon, 
dmon: DMon, 
abdmonoid: AbDMon, 
grp: Group{i}, 
abgrp: AbGrp, 
abdgrp: AbDGrp, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
oal_ble: ps ≤≤b qs
Lemmas referenced : 
bor_wf, 
infix_ap_wf, 
set_car_wf, 
oalist_wf, 
subtype_rel_sets, 
mon_wf, 
inverse_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
grp_inv_wf, 
comm_wf, 
eqfun_p_wf, 
grp_eq_wf, 
set_wf, 
sq_stable__comm, 
bool_wf, 
set_eq_wf, 
oal_blt_wf, 
abdgrp_wf, 
loset_wf
Rules used in proof : 
imageElimination, 
baseClosed, 
imageMemberEquality, 
introduction, 
independent_functionElimination, 
dependent_set_memberEquality, 
independent_isectElimination, 
universeEquality, 
because_Cache, 
lambdaEquality, 
rename, 
setElimination, 
cumulativity, 
hypothesis, 
setEquality, 
instantiate, 
applyEquality, 
hypothesisEquality, 
dependent_functionElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDGrp.  \mforall{}ps,qs:|oal(s;g)|.    (ps  \mleq{}\mleq{}\msubb{}  qs  \mmember{}  \mBbbB{})
Date html generated:
2016_05_16-AM-08_20_36
Last ObjectModification:
2016_01_16-PM-11_56_39
Theory : polynom_2
Home
Index