Nuprl Lemma : oal_ble_wf

s:LOSet. ∀g:AbDGrp. ∀ps,qs:|oal(s;g)|.  (ps ≤≤b qs ∈ 𝔹)


Proof




Definitions occuring in Statement :  oal_ble: ps ≤≤b qs oalist: oal(a;b) bool: 𝔹 all: x:A. B[x] member: t ∈ T abdgrp: AbDGrp loset: LOSet set_car: |p|
Definitions unfolded in proof :  squash: T sq_stable: SqStable(P) implies:  Q uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] prop: mon: Mon dmon: DMon abdmonoid: AbDMon grp: Group{i} abgrp: AbGrp abdgrp: AbDGrp subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] oal_ble: ps ≤≤b qs
Lemmas referenced :  bor_wf infix_ap_wf set_car_wf oalist_wf subtype_rel_sets mon_wf inverse_wf grp_car_wf grp_op_wf grp_id_wf grp_inv_wf comm_wf eqfun_p_wf grp_eq_wf set_wf sq_stable__comm bool_wf set_eq_wf oal_blt_wf abdgrp_wf loset_wf
Rules used in proof :  imageElimination baseClosed imageMemberEquality introduction independent_functionElimination dependent_set_memberEquality independent_isectElimination universeEquality because_Cache lambdaEquality rename setElimination cumulativity hypothesis setEquality instantiate applyEquality hypothesisEquality dependent_functionElimination thin isectElimination sqequalHypSubstitution lemma_by_obid cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDGrp.  \mforall{}ps,qs:|oal(s;g)|.    (ps  \mleq{}\mleq{}\msubb{}  qs  \mmember{}  \mBbbB{})



Date html generated: 2016_05_16-AM-08_20_36
Last ObjectModification: 2016_01_16-PM-11_56_39

Theory : polynom_2


Home Index