Nuprl Lemma : oal_blt_wf
∀s:LOSet. ∀g:AbDGrp. ∀ps,qs:|oal(s;g)|.  (ps <<b qs ∈ 𝔹)
Proof
Definitions occuring in Statement : 
oal_blt: ps <<b qs
, 
oalist: oal(a;b)
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
abdgrp: AbDGrp
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
mon: Mon
, 
uall: ∀[x:A]. B[x]
, 
dmon: DMon
, 
abdmonoid: AbDMon
, 
grp: Group{i}
, 
abgrp: AbGrp
, 
abdgrp: AbDGrp
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
oal_blt: ps <<b qs
Lemmas referenced : 
oal_bpos_wf, 
subtype_rel_sets, 
mon_wf, 
inverse_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
grp_inv_wf, 
comm_wf, 
eqfun_p_wf, 
grp_eq_wf, 
set_wf, 
sq_stable__comm, 
oal_merge_wf2, 
oal_neg_wf2, 
set_car_wf, 
oalist_wf, 
abdgrp_wf, 
loset_wf
Rules used in proof : 
imageElimination, 
baseClosed, 
imageMemberEquality, 
introduction, 
independent_functionElimination, 
dependent_set_memberEquality, 
independent_isectElimination, 
universeEquality, 
because_Cache, 
lambdaEquality, 
rename, 
setElimination, 
cumulativity, 
hypothesis, 
setEquality, 
isectElimination, 
instantiate, 
applyEquality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDGrp.  \mforall{}ps,qs:|oal(s;g)|.    (ps  <<\msubb{}  qs  \mmember{}  \mBbbB{})
Date html generated:
2016_05_16-AM-08_20_31
Last ObjectModification:
2016_01_16-PM-11_56_36
Theory : polynom_2
Home
Index