Nuprl Lemma : oal_neg_wf2

a:LOSet. ∀b:AbDGrp. ∀ps:|oal(a;b)|.  (--ps ∈ |oal(a;b)|)


Proof




Definitions occuring in Statement :  oal_neg: --ps oalist: oal(a;b) all: x:A. B[x] member: t ∈ T abdgrp: AbDGrp loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet abdgrp: AbDGrp abgrp: AbGrp grp: Group{i} mon: Mon and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] top: Top dmon: DMon prop: subtype_rel: A ⊆B uimplies: supposing a squash: T true: True guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) grp_car: |g| so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q
Lemmas referenced :  oal_neg_wf assert_functionality_wrt_uiff sd_ordered_wf map_wf set_car_wf grp_car_wf pi1_wf_top set_prod_wf dset_of_mon_wf eqfun_p_wf grp_eq_wf dset_wf squash_wf true_wf list_wf oal_neg_keys_invar assert_wf not_wf mem_wf grp_id_wf subtype_rel_self dset_of_mon_wf0 pi2_wf oalist_wf abdgrp_wf loset_wf oal_neg_non_id_vals
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution sqequalRule setElimination thin rename dependent_set_memberEquality introduction extract_by_obid dependent_functionElimination hypothesisEquality hypothesis productElimination isectElimination productEquality because_Cache lambdaEquality independent_pairEquality isect_memberEquality voidElimination voidEquality applyEquality independent_isectElimination imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed independent_pairFormation independent_functionElimination

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDGrp.  \mforall{}ps:|oal(a;b)|.    (--ps  \mmember{}  |oal(a;b)|)



Date html generated: 2018_05_22-AM-07_46_26
Last ObjectModification: 2018_05_19-AM-08_30_09

Theory : polynom_2


Home Index