Nuprl Lemma : oal_neg_non_id_vals
∀a:LOSet. ∀b:AbDGrp. ∀ps:(|a| × |b|) List.  ((¬↑(e ∈b map(λx.(snd(x));ps))) 
⇒ (¬↑(e ∈b map(λx.(snd(x));--ps))))
Proof
Definitions occuring in Statement : 
oal_neg: --ps
, 
mem: a ∈b as
, 
map: map(f;as)
, 
list: T List
, 
assert: ↑b
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
product: x:A × B[x]
, 
dset_of_mon: g↓set
, 
abdgrp: AbDGrp
, 
grp_id: e
, 
grp_car: |g|
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
, 
abdgrp: AbDGrp
, 
abgrp: AbGrp
, 
grp: Group{i}
, 
mon: Mon
, 
oal_neg: --ps
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
dmon: DMon
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
pi2: snd(t)
, 
dset_of_mon: g↓set
, 
set_car: |p|
, 
pi1: fst(t)
, 
prop: ℙ
, 
top: Top
, 
compose: f o g
, 
nat: ℕ
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
guard: {T}
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
set_eq: =b
, 
infix_ap: x f y
, 
grp_car: |g|
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
Lemmas referenced : 
oal_neg_wf, 
assert_wf, 
mem_wf, 
dset_of_mon_wf, 
subtype_rel_sets, 
grp_id_wf, 
map_wf, 
set_car_wf, 
grp_car_wf, 
dset_of_mon_wf0, 
not_wf, 
list_wf, 
abdgrp_wf, 
loset_wf, 
map_map, 
istype-void, 
mon_wf, 
inverse_wf, 
grp_op_wf, 
grp_inv_wf, 
comm_wf, 
eqfun_p_wf, 
grp_eq_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
assert_witness, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
list-cases, 
map_nil_lemma, 
mem_nil_lemma, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-false, 
le_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
map_cons_lemma, 
mem_cons_lemma, 
nat_wf, 
bor_wf, 
infix_ap_wf, 
bool_wf, 
or_wf, 
equal_wf, 
subtype_rel_self, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
assert_of_mon_eq, 
grp_subtype_igrp, 
abgrp_subtype_grp, 
abdgrp_subtype_abgrp, 
subtype_rel_transitivity, 
abgrp_wf, 
grp_wf, 
igrp_wf, 
squash_wf, 
true_wf, 
istype-universe, 
grp_inv_inv, 
grp_inv_id, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
voidElimination, 
universeIsType, 
isectElimination, 
applyEquality, 
sqequalRule, 
instantiate, 
independent_isectElimination, 
lambdaEquality_alt, 
setIsType, 
productEquality, 
productElimination, 
productIsType, 
isect_memberEquality_alt, 
setEquality, 
cumulativity, 
intWeakElimination, 
natural_numberEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
equalityIsType1, 
dependent_set_memberEquality_alt, 
imageElimination, 
equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
intEquality, 
unionIsType, 
inlFormation_alt, 
inrFormation_alt, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDGrp.  \mforall{}ps:(|a|  \mtimes{}  |b|)  List.
    ((\mneg{}\muparrow{}(e  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps)))  {}\mRightarrow{}  (\mneg{}\muparrow{}(e  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));--ps))))
Date html generated:
2019_10_16-PM-01_07_46
Last ObjectModification:
2018_10_08-PM-05_27_24
Theory : polynom_2
Home
Index