Nuprl Lemma : oal_neg_non_id_vals

a:LOSet. ∀b:AbDGrp. ∀ps:(|a| × |b|) List.  ((¬↑(e ∈b map(λx.(snd(x));ps)))  (¬↑(e ∈b map(λx.(snd(x));--ps))))


Proof




Definitions occuring in Statement :  oal_neg: --ps mem: a ∈b as map: map(f;as) list: List assert: b pi2: snd(t) all: x:A. B[x] not: ¬A implies:  Q lambda: λx.A[x] product: x:A × B[x] dset_of_mon: g↓set abdgrp: AbDGrp grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet abdgrp: AbDGrp abgrp: AbGrp grp: Group{i} mon: Mon oal_neg: --ps uall: [x:A]. B[x] subtype_rel: A ⊆B dmon: DMon so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a pi2: snd(t) dset_of_mon: g↓set set_car: |p| pi1: fst(t) prop: top: Top compose: g nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q guard: {T} or: P ∨ Q assert: b ifthenelse: if then else fi  bfalse: ff cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) set_eq: =b infix_ap: y grp_car: |g| iff: ⇐⇒ Q rev_implies:  Q true: True
Lemmas referenced :  oal_neg_wf assert_wf mem_wf dset_of_mon_wf subtype_rel_sets grp_id_wf map_wf set_car_wf grp_car_wf dset_of_mon_wf0 not_wf list_wf abdgrp_wf loset_wf map_map istype-void mon_wf inverse_wf grp_op_wf grp_inv_wf comm_wf eqfun_p_wf grp_eq_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf assert_witness intformeq_wf int_formula_prop_eq_lemma list-cases map_nil_lemma mem_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le map_cons_lemma mem_cons_lemma nat_wf bor_wf infix_ap_wf bool_wf or_wf equal_wf subtype_rel_self iff_transitivity iff_weakening_uiff assert_of_bor assert_of_mon_eq grp_subtype_igrp abgrp_subtype_grp abdgrp_subtype_abgrp subtype_rel_transitivity abgrp_wf grp_wf igrp_wf squash_wf true_wf istype-universe grp_inv_inv grp_inv_id iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination setElimination rename because_Cache hypothesis hypothesisEquality independent_functionElimination voidElimination universeIsType isectElimination applyEquality sqequalRule instantiate independent_isectElimination lambdaEquality_alt setIsType productEquality productElimination productIsType isect_memberEquality_alt setEquality cumulativity intWeakElimination natural_numberEquality approximateComputation dependent_pairFormation_alt int_eqEquality independent_pairFormation equalityTransitivity equalitySymmetry applyLambdaEquality functionIsTypeImplies inhabitedIsType unionElimination promote_hyp hypothesis_subsumption equalityIsType1 dependent_set_memberEquality_alt imageElimination equalityIsType4 baseApply closedConclusion baseClosed intEquality unionIsType inlFormation_alt inrFormation_alt universeEquality imageMemberEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDGrp.  \mforall{}ps:(|a|  \mtimes{}  |b|)  List.
    ((\mneg{}\muparrow{}(e  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));ps)))  {}\mRightarrow{}  (\mneg{}\muparrow{}(e  \mmember{}\msubb{}  map(\mlambda{}x.(snd(x));--ps))))



Date html generated: 2019_10_16-PM-01_07_46
Last ObjectModification: 2018_10_08-PM-05_27_24

Theory : polynom_2


Home Index