Nuprl Lemma : hgrp_of_ocgrp_wf2

[g:OGrp]. (g↓hgrp ∈ OCMon)


Proof




Definitions occuring in Statement :  hgrp_of_ocgrp: g↓hgrp ocgrp: OGrp ocmon: OCMon uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a hgrp_of_ocgrp: g↓hgrp grp_car: |g| pi1: fst(t) grp_eq: =b pi2: snd(t) grp_le: b exists: x:A. B[x] ocgrp: OGrp hgrp_car: |g|+ ocmon: OCMon abmonoid: AbMon mon: Mon and: P ∧ Q prop: so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] so_apply: x[s1;s2] infix_ap: y mon_hom_inj_p: IsMonHomInj(g;h;f) inject: Inj(A;B;f) monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) grp_op: * grp_id: e cand: c∧ B implies:  Q rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  inj_into_ocmon hgrp_of_ocgrp_wf ocgrp_wf hgrp_car_wf mon_hom_inj_p_wf rels_iso_wf grp_car_wf assert_wf infix_ap_wf bool_wf grp_eq_wf subtype_rel_dep_function subtype_rel_self grp_le_wf exists_wf grp_op_wf grp_id_wf equal_wf grp_leq_wf hgrp_car_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination sqequalRule axiomEquality equalityTransitivity equalitySymmetry dependent_pairFormation setElimination rename lambdaEquality independent_pairFormation productEquality because_Cache applyEquality functionEquality lambdaFormation isect_memberEquality productElimination dependent_set_memberEquality

Latex:
\mforall{}[g:OGrp].  (g\mdownarrow{}hgrp  \mmember{}  OCMon)



Date html generated: 2016_05_15-PM-00_14_21
Last ObjectModification: 2015_12_26-PM-11_41_19

Theory : groups_1


Home Index