Nuprl Lemma : hgrp_of_ocgrp_wf2
∀[g:OGrp]. (g↓hgrp ∈ OCMon)
Proof
Definitions occuring in Statement : 
hgrp_of_ocgrp: g↓hgrp
, 
ocgrp: OGrp
, 
ocmon: OCMon
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
hgrp_of_ocgrp: g↓hgrp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_eq: =b
, 
pi2: snd(t)
, 
grp_le: ≤b
, 
exists: ∃x:A. B[x]
, 
ocgrp: OGrp
, 
hgrp_car: |g|+
, 
ocmon: OCMon
, 
abmonoid: AbMon
, 
mon: Mon
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
so_apply: x[s1;s2]
, 
infix_ap: x f y
, 
mon_hom_inj_p: IsMonHomInj(g;h;f)
, 
inject: Inj(A;B;f)
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
grp_op: *
, 
grp_id: e
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
inj_into_ocmon, 
hgrp_of_ocgrp_wf, 
ocgrp_wf, 
hgrp_car_wf, 
mon_hom_inj_p_wf, 
rels_iso_wf, 
grp_car_wf, 
assert_wf, 
infix_ap_wf, 
bool_wf, 
grp_eq_wf, 
subtype_rel_dep_function, 
subtype_rel_self, 
grp_le_wf, 
exists_wf, 
grp_op_wf, 
grp_id_wf, 
equal_wf, 
grp_leq_wf, 
hgrp_car_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
setElimination, 
rename, 
lambdaEquality, 
independent_pairFormation, 
productEquality, 
because_Cache, 
applyEquality, 
functionEquality, 
lambdaFormation, 
isect_memberEquality, 
productElimination, 
dependent_set_memberEquality
Latex:
\mforall{}[g:OGrp].  (g\mdownarrow{}hgrp  \mmember{}  OCMon)
Date html generated:
2016_05_15-PM-00_14_21
Last ObjectModification:
2015_12_26-PM-11_41_19
Theory : groups_1
Home
Index