Nuprl Lemma : set_car_inc

s:LOSet. ∀g:OGrp.  (|oal(s;g↓hgrp)| ⊆|oal(s;g)|)


Proof




Definitions occuring in Statement :  oalist: oal(a;b) subtype_rel: A ⊆B all: x:A. B[x] hgrp_of_ocgrp: g↓hgrp ocgrp: OGrp loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set hgrp_of_ocgrp: g↓hgrp grp_id: e pi2: snd(t) grp_car: |g| member: t ∈ T uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet ocgrp: OGrp ocmon: OCMon abmonoid: AbMon mon: Mon prop: and: P ∧ Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] hgrp_car: |g|+ implies:  Q cand: c∧ B mem: a ∈b as set_eq: =b grp_eq: =b mon_for: For{g} x ∈ as. f[x] bor_mon: <𝔹,∨b> grp_op: * for: For{T,op,id} x ∈ as. f[x] tlambda: λx:T. b[x]
Lemmas referenced :  ocgrp_wf loset_wf list_wf set_car_wf hgrp_car_wf grp_car_wf assert_wf sd_ordered_wf map_wf not_wf mem_wf dset_of_mon_wf hgrp_of_ocgrp_wf2 abdmonoid_dmon ocmon_subtype_abdmonoid subtype_rel_transitivity ocmon_wf abdmonoid_wf dmon_wf grp_id_wf2 dset_of_mon_wf0 hgrp_of_ocgrp_wf ocgrp_subtype_ocmon grp_id_wf subtype_rel_sets subtype_rel_set subtype_rel_list subtype_rel_product
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin productEquality setElimination rename hypothesisEquality lambdaEquality dependent_functionElimination because_Cache productElimination applyEquality instantiate independent_isectElimination independent_pairFormation

Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.    (|oal(s;g\mdownarrow{}hgrp)|  \msubseteq{}r  |oal(s;g)|)



Date html generated: 2016_05_16-AM-08_22_16
Last ObjectModification: 2015_12_28-PM-06_25_07

Theory : polynom_2


Home Index