Nuprl Lemma : oal_umap_wf
∀s:LOSet. ∀g:AbDMon. ∀h:AbMon. ∀f:|s| ⟶ |g| ⟶ |h|.  (umap(h,f) ∈ |oal(s;g)| ⟶ |h|)
Proof
Definitions occuring in Statement : 
oal_umap: umap(h,f)
, 
oalist: oal(a;b)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
abdmonoid: AbDMon
, 
abmonoid: AbMon
, 
grp_car: |g|
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
oal_umap: umap(h,f)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
tlambda: λx:T. b[x]
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
dset: DSet
, 
uall: ∀[x:A]. B[x]
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
mon: Mon
, 
oalist: oal(a;b)
, 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq)
, 
set_car: |p|
, 
pi1: fst(t)
, 
dset_list: s List
, 
set_prod: s × t
, 
dset_of_mon: g↓set
, 
so_apply: x[s]
, 
abmonoid: AbMon
Lemmas referenced : 
mset_for_wf, 
abmonoid_subtype_iabmonoid, 
lookup_wf, 
grp_car_wf, 
grp_id_wf, 
set_car_wf, 
oalist_wf, 
dset_wf, 
oal_dom_wf, 
abdmonoid_abmonoid, 
abmonoid_wf, 
abdmonoid_wf, 
loset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
isectElimination, 
because_Cache, 
functionEquality
Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}h:AbMon.  \mforall{}f:|s|  {}\mrightarrow{}  |g|  {}\mrightarrow{}  |h|.    (umap(h,f)  \mmember{}  |oal(s;g)|  {}\mrightarrow{}  |h|)
Date html generated:
2016_05_16-AM-08_22_57
Last ObjectModification:
2015_12_28-PM-06_24_55
Theory : polynom_2
Home
Index