Nuprl Lemma : oal_umap_wf

s:LOSet. ∀g:AbDMon. ∀h:AbMon. ∀f:|s| ⟶ |g| ⟶ |h|.  (umap(h,f) ∈ |oal(s;g)| ⟶ |h|)


Proof




Definitions occuring in Statement :  oal_umap: umap(h,f) oalist: oal(a;b) all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] abdmonoid: AbDMon abmonoid: AbMon grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  oal_umap: umap(h,f) all: x:A. B[x] member: t ∈ T tlambda: λx:T. b[x] loset: LOSet poset: POSet{i} qoset: QOSet subtype_rel: A ⊆B so_lambda: λ2x.t[x] dset: DSet uall: [x:A]. B[x] abdmonoid: AbDMon dmon: DMon mon: Mon oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set so_apply: x[s] abmonoid: AbMon
Lemmas referenced :  mset_for_wf abmonoid_subtype_iabmonoid lookup_wf grp_car_wf grp_id_wf set_car_wf oalist_wf dset_wf oal_dom_wf abdmonoid_abmonoid abmonoid_wf abdmonoid_wf loset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lambdaEquality lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis applyEquality isectElimination because_Cache functionEquality

Latex:
\mforall{}s:LOSet.  \mforall{}g:AbDMon.  \mforall{}h:AbMon.  \mforall{}f:|s|  {}\mrightarrow{}  |g|  {}\mrightarrow{}  |h|.    (umap(h,f)  \mmember{}  |oal(s;g)|  {}\mrightarrow{}  |h|)



Date html generated: 2016_05_16-AM-08_22_57
Last ObjectModification: 2015_12_28-PM-06_24_55

Theory : polynom_2


Home Index