Nuprl Lemma : fabmon_of_nat_mcp_wf

s:DSet. ∀m:MCopower(s;<ℤ+>↓hgrp).  (fabmon_of_nat_mcp(m) ∈ FAbMon(s))


Proof




Definitions occuring in Statement :  fabmon_of_nat_mcp: fabmon_of_nat_mcp(m) mcopower: MCopower(s;g) free_abmonoid: FAbMon(S) all: x:A. B[x] member: t ∈ T int_add_grp: <ℤ+> hgrp_of_ocgrp: g↓hgrp dset: DSet
Definitions unfolded in proof :  fabmon_of_nat_mcp: fabmon_of_nat_mcp(m) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B ocmon: OCMon mcopower: MCopower(s;g) nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: dset: DSet guard: {T} uimplies: supposing a abmonoid: AbMon mon: Mon monoid_hom: MonHom(M1,M2) compose: g squash: T true: True iff: ⇐⇒ Q rev_implies:  Q int_hgrp_el: zhgrp(n) int_hgrp_to_nat: nat(n) hgrp_of_ocgrp: g↓hgrp grp_car: |g| pi1: fst(t) abgrp: AbGrp grp: Group{i} imon: IMonoid hgrp_car: |g|+ mon_nat_op: n ⋅ e nat_add_mon: <ℕ,+> grp_op: * pi2: snd(t) grp_id: e int_add_grp: <ℤ+>
Lemmas referenced :  mk_fabmon mcopower_mon_wf hgrp_of_ocgrp_wf2 int_add_grp_wf2 ocmon_wf mcopower_inj_wf int_hgrp_el_wf false_wf le_wf set_car_wf mcopower_umap_wf mon_nat_op_wf2 iabmonoid_subtype_imon abmonoid_subtype_iabmonoid subtype_rel_transitivity abmonoid_wf iabmonoid_wf imon_wf int_hgrp_to_nat_wf nat_subtype grp_car_wf hgrp_of_ocgrp_wf equal_wf compose_wf monoid_hom_p_wf mcopower_wf dset_wf mcopower_umap_is_hom zhgrp_op_mon_hom_1 squash_wf true_wf mcopower_umap_comm_tri iff_weakening_equal mon_nat_op_one mcopower_umap_unique hgrp_car_wf int_add_grp_wf abgrp_wf grp_leq_wf grp_id_wf mon_nat_op_hom_swap abdmonoid_abmonoid ocmon_subtype_abdmonoid abdmonoid_wf mcopower_inj_is_hom nat_op_on_nat_add_mon mul-one
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis applyEquality lambdaEquality setElimination rename because_Cache dependent_set_memberEquality natural_numberEquality independent_pairFormation instantiate independent_isectElimination functionExtensionality functionEquality independent_functionElimination imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination

Latex:
\mforall{}s:DSet.  \mforall{}m:MCopower(s;<\mBbbZ{}+>\mdownarrow{}hgrp).    (fabmon\_of\_nat\_mcp(m)  \mmember{}  FAbMon(s))



Date html generated: 2017_10_01-AM-10_01_18
Last ObjectModification: 2017_03_03-PM-01_04_01

Theory : polynom_1


Home Index