Nuprl Lemma : fabmon_of_nat_mcp_wf
∀s:DSet. ∀m:MCopower(s;<ℤ+>↓hgrp).  (fabmon_of_nat_mcp(m) ∈ FAbMon(s))
Proof
Definitions occuring in Statement : 
fabmon_of_nat_mcp: fabmon_of_nat_mcp(m)
, 
mcopower: MCopower(s;g)
, 
free_abmonoid: FAbMon(S)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
int_add_grp: <ℤ+>
, 
hgrp_of_ocgrp: g↓hgrp
, 
dset: DSet
Definitions unfolded in proof : 
fabmon_of_nat_mcp: fabmon_of_nat_mcp(m)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
ocmon: OCMon
, 
mcopower: MCopower(s;g)
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
dset: DSet
, 
guard: {T}
, 
uimplies: b supposing a
, 
abmonoid: AbMon
, 
mon: Mon
, 
monoid_hom: MonHom(M1,M2)
, 
compose: f o g
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_hgrp_el: zhgrp(n)
, 
int_hgrp_to_nat: nat(n)
, 
hgrp_of_ocgrp: g↓hgrp
, 
grp_car: |g|
, 
pi1: fst(t)
, 
abgrp: AbGrp
, 
grp: Group{i}
, 
imon: IMonoid
, 
hgrp_car: |g|+
, 
mon_nat_op: n ⋅ e
, 
nat_add_mon: <ℕ,+>
, 
grp_op: *
, 
pi2: snd(t)
, 
grp_id: e
, 
int_add_grp: <ℤ+>
Lemmas referenced : 
mk_fabmon, 
mcopower_mon_wf, 
hgrp_of_ocgrp_wf2, 
int_add_grp_wf2, 
ocmon_wf, 
mcopower_inj_wf, 
int_hgrp_el_wf, 
false_wf, 
le_wf, 
set_car_wf, 
mcopower_umap_wf, 
mon_nat_op_wf2, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
subtype_rel_transitivity, 
abmonoid_wf, 
iabmonoid_wf, 
imon_wf, 
int_hgrp_to_nat_wf, 
nat_subtype, 
grp_car_wf, 
hgrp_of_ocgrp_wf, 
equal_wf, 
compose_wf, 
monoid_hom_p_wf, 
mcopower_wf, 
dset_wf, 
mcopower_umap_is_hom, 
zhgrp_op_mon_hom_1, 
squash_wf, 
true_wf, 
mcopower_umap_comm_tri, 
iff_weakening_equal, 
mon_nat_op_one, 
mcopower_umap_unique, 
hgrp_car_wf, 
int_add_grp_wf, 
abgrp_wf, 
grp_leq_wf, 
grp_id_wf, 
mon_nat_op_hom_swap, 
abdmonoid_abmonoid, 
ocmon_subtype_abdmonoid, 
abdmonoid_wf, 
mcopower_inj_is_hom, 
nat_op_on_nat_add_mon, 
mul-one
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
instantiate, 
independent_isectElimination, 
functionExtensionality, 
functionEquality, 
independent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}s:DSet.  \mforall{}m:MCopower(s;<\mBbbZ{}+>\mdownarrow{}hgrp).    (fabmon\_of\_nat\_mcp(m)  \mmember{}  FAbMon(s))
Date html generated:
2017_10_01-AM-10_01_18
Last ObjectModification:
2017_03_03-PM-01_04_01
Theory : polynom_1
Home
Index