Nuprl Lemma : mcopower_umap_unique

s:DSet. ∀g:AbMon. ∀c:MCopower(s;g). ∀h:AbMon. ∀f:|s| ⟶ MonHom(g,h). ∀a':|c.mon| ⟶ |h|.
  (IsMonHom{c.mon,h}(a')
   (∀j:|s|. ((f j) (a' (c.inj j)) ∈ (|g| ⟶ |h|)))
   (a' (c.umap f) ∈ (|c.mon| ⟶ |h|)))


Proof




Definitions occuring in Statement :  mcopower: MCopower(s;g) mcopower_umap: m.umap mcopower_inj: m.inj mcopower_mon: m.mon compose: g all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) monoid_hom_p: IsMonHom{M1,M2}(f) abmonoid: AbMon grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uni_sat: !x:T. Q[x] member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] dset: DSet prop: so_lambda: λ2x.t[x] abmonoid: AbMon mon: Mon subtype_rel: A ⊆B mcopower: MCopower(s;g) so_apply: x[s]
Lemmas referenced :  mcopower_properties set_car_wf all_wf equal_wf grp_car_wf compose_wf mcopower_mon_wf abmonoid_wf mcopower_inj_wf monoid_hom_p_wf monoid_hom_wf mcopower_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution sqequalRule hypothesis dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination independent_pairFormation isectElimination setElimination rename lambdaEquality functionEquality applyEquality because_Cache

Latex:
\mforall{}s:DSet.  \mforall{}g:AbMon.  \mforall{}c:MCopower(s;g).  \mforall{}h:AbMon.  \mforall{}f:|s|  {}\mrightarrow{}  MonHom(g,h).  \mforall{}a':|c.mon|  {}\mrightarrow{}  |h|.
    (IsMonHom\{c.mon,h\}(a')  {}\mRightarrow{}  (\mforall{}j:|s|.  ((f  j)  =  (a'  o  (c.inj  j))))  {}\mRightarrow{}  (a'  =  (c.umap  h  f)))



Date html generated: 2016_05_16-AM-08_13_12
Last ObjectModification: 2015_12_28-PM-06_09_58

Theory : polynom_1


Home Index