Nuprl Lemma : mk_fabmon

s:DSet. ∀g:AbMon. ∀i:|s| ⟶ |g|. ∀U:g':AbMon ⟶ (|s| ⟶ |g'|) ⟶ |g| ⟶ |g'|.
  ((∀g':AbMon. ∀f:|s| ⟶ |g'|.
      (IsMonHom{g,g'}(U g' f)
      ∧ (((U g' f) i) f ∈ (|s| ⟶ |g'|))
      ∧ (∀u:|g| ⟶ |g'|. (IsMonHom{g,g'}(u)  ((u i) f ∈ (|s| ⟶ |g'|))  (u (U g' f) ∈ (|g| ⟶ |g'|))))))
   (<g, i, U> ∈ FAbMon(s)))


Proof




Definitions occuring in Statement :  free_abmonoid: FAbMon(S) compose: g all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T apply: a function: x:A ⟶ B[x] pair: <a, b> equal: t ∈ T monoid_hom_p: IsMonHom{M1,M2}(f) abmonoid: AbMon grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  free_abmonoid: FAbMon(S) all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] dset: DSet subtype_rel: A ⊆B abmonoid: AbMon mon: Mon so_lambda: λ2x.t[x] monoid_hom: MonHom(M1,M2) so_apply: x[s] prop: and: P ∧ Q unique_set: {!x:T P[x]} cand: c∧ B guard: {T}
Lemmas referenced :  set_car_wf abmonoid_wf grp_car_wf unique_set_wf monoid_hom_wf equal_wf compose_wf all_wf monoid_hom_p_wf dset_wf monoid_hom_properties
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut dependent_pairEquality hypothesisEquality functionExtensionality applyEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis functionEquality lambdaEquality cumulativity universeEquality productEquality instantiate dependent_set_memberEquality independent_pairFormation dependent_functionElimination productElimination independent_functionElimination

Latex:
\mforall{}s:DSet.  \mforall{}g:AbMon.  \mforall{}i:|s|  {}\mrightarrow{}  |g|.  \mforall{}U:g':AbMon  {}\mrightarrow{}  (|s|  {}\mrightarrow{}  |g'|)  {}\mrightarrow{}  |g|  {}\mrightarrow{}  |g'|.
    ((\mforall{}g':AbMon.  \mforall{}f:|s|  {}\mrightarrow{}  |g'|.
            (IsMonHom\{g,g'\}(U  g'  f)
            \mwedge{}  (((U  g'  f)  o  i)  =  f)
            \mwedge{}  (\mforall{}u:|g|  {}\mrightarrow{}  |g'|.  (IsMonHom\{g,g'\}(u)  {}\mRightarrow{}  ((u  o  i)  =  f)  {}\mRightarrow{}  (u  =  (U  g'  f))))))
    {}\mRightarrow{}  (<g,  i,  U>  \mmember{}  FAbMon(s)))



Date html generated: 2017_10_01-AM-10_01_14
Last ObjectModification: 2017_03_03-PM-01_03_32

Theory : polynom_1


Home Index