Nuprl Lemma : zhgrp_op_mon_hom_1

[g:IMonoid]. ∀[a:|g|].  IsMonHom{<ℤ+>↓hgrp,g}(λn.(nat(n) ⋅ a))


Proof




Definitions occuring in Statement :  int_hgrp_to_nat: nat(n) int_add_grp: <ℤ+> mon_nat_op: n ⋅ e hgrp_of_ocgrp: g↓hgrp monoid_hom_p: IsMonHom{M1,M2}(f) imon: IMonoid grp_car: |g| uall: [x:A]. B[x] lambda: λx.A[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T monoid_hom_p: IsMonHom{M1,M2}(f) and: P ∧ Q fun_thru_2op: FunThru2op(A;B;opa;opb;f) imon: IMonoid subtype_rel: A ⊆B nat_add_mon: <ℕ,+> grp_car: |g| pi1: fst(t) uimplies: supposing a compose: g
Lemmas referenced :  grp_car_wf hgrp_of_ocgrp_wf int_add_grp_wf2 imon_wf nat_op_mon_hom_1 zhgrp_to_nat_is_hom mon_hom_p_comp nat_add_mon_wf int_hgrp_to_nat_wf nat_wf mon_nat_op_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality axiomEquality hypothesis lemma_by_obid setElimination rename because_Cache lambdaEquality applyEquality independent_isectElimination

Latex:
\mforall{}[g:IMonoid].  \mforall{}[a:|g|].    IsMonHom\{<\mBbbZ{}+>\mdownarrow{}hgrp,g\}(\mlambda{}n.(nat(n)  \mcdot{}  a))



Date html generated: 2016_05_15-PM-00_19_45
Last ObjectModification: 2015_12_26-PM-11_37_33

Theory : groups_1


Home Index