Nuprl Lemma : zhgrp_op_mon_hom_1
∀[g:IMonoid]. ∀[a:|g|].  IsMonHom{<ℤ+>↓hgrp,g}(λn.(nat(n) ⋅ a))
Proof
Definitions occuring in Statement : 
int_hgrp_to_nat: nat(n), 
int_add_grp: <ℤ+>, 
mon_nat_op: n ⋅ e, 
hgrp_of_ocgrp: g↓hgrp, 
monoid_hom_p: IsMonHom{M1,M2}(f), 
imon: IMonoid, 
grp_car: |g|, 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
monoid_hom_p: IsMonHom{M1,M2}(f), 
and: P ∧ Q, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
imon: IMonoid, 
subtype_rel: A ⊆r B, 
nat_add_mon: <ℕ,+>, 
grp_car: |g|, 
pi1: fst(t), 
uimplies: b supposing a, 
compose: f o g
Lemmas referenced : 
grp_car_wf, 
hgrp_of_ocgrp_wf, 
int_add_grp_wf2, 
imon_wf, 
nat_op_mon_hom_1, 
zhgrp_to_nat_is_hom, 
mon_hom_p_comp, 
nat_add_mon_wf, 
int_hgrp_to_nat_wf, 
nat_wf, 
mon_nat_op_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
isect_memberEquality, 
isectElimination, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
lemma_by_obid, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality, 
applyEquality, 
independent_isectElimination
Latex:
\mforall{}[g:IMonoid].  \mforall{}[a:|g|].    IsMonHom\{<\mBbbZ{}+>\mdownarrow{}hgrp,g\}(\mlambda{}n.(nat(n)  \mcdot{}  a))
 Date html generated: 
2016_05_15-PM-00_19_45
 Last ObjectModification: 
2015_12_26-PM-11_37_33
Theory : groups_1
Home
Index