Nuprl Lemma : mon_hom_p_comp
∀[g,h,k:GrpSig]. ∀[r:|g| ⟶ |h|]. ∀[s:|h| ⟶ |k|].
  (IsMonHom{g,k}(s o r)) supposing (IsMonHom{h,k}(s) and IsMonHom{g,h}(r))
Proof
Definitions occuring in Statement : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
grp_car: |g|
, 
grp_sig: GrpSig
, 
compose: f o g
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
infix_ap: x f y
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
grp_car_wf, 
uall_wf, 
equal_wf, 
infix_ap_wf, 
grp_op_wf, 
grp_id_wf, 
grp_sig_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
independent_pairEquality, 
productEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[g,h,k:GrpSig].  \mforall{}[r:|g|  {}\mrightarrow{}  |h|].  \mforall{}[s:|h|  {}\mrightarrow{}  |k|].
    (IsMonHom\{g,k\}(s  o  r))  supposing  (IsMonHom\{h,k\}(s)  and  IsMonHom\{g,h\}(r))
Date html generated:
2017_10_01-AM-08_14_13
Last ObjectModification:
2017_02_28-PM-01_58_51
Theory : groups_1
Home
Index