Nuprl Lemma : mon_hom_p_comp

[g,h,k:GrpSig]. ∀[r:|g| ⟶ |h|]. ∀[s:|h| ⟶ |k|].
  (IsMonHom{g,k}(s r)) supposing (IsMonHom{h,k}(s) and IsMonHom{g,h}(r))


Proof




Definitions occuring in Statement :  monoid_hom_p: IsMonHom{M1,M2}(f) grp_car: |g| grp_sig: GrpSig compose: g uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  monoid_hom_p: IsMonHom{M1,M2}(f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) compose: g uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] infix_ap: y squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  grp_car_wf uall_wf equal_wf infix_ap_wf grp_op_wf grp_id_wf grp_sig_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution productElimination thin hypothesis extract_by_obid isectElimination hypothesisEquality isect_memberEquality axiomEquality because_Cache independent_pairEquality productEquality lambdaEquality applyEquality functionExtensionality equalityTransitivity equalitySymmetry functionEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}[g,h,k:GrpSig].  \mforall{}[r:|g|  {}\mrightarrow{}  |h|].  \mforall{}[s:|h|  {}\mrightarrow{}  |k|].
    (IsMonHom\{g,k\}(s  o  r))  supposing  (IsMonHom\{h,k\}(s)  and  IsMonHom\{g,h\}(r))



Date html generated: 2017_10_01-AM-08_14_13
Last ObjectModification: 2017_02_28-PM-01_58_51

Theory : groups_1


Home Index