Nuprl Lemma : zhgrp_to_nat_is_hom
IsMonHom{<ℤ+>↓hgrp,<ℕ,+>}(λn.nat(n))
Proof
Definitions occuring in Statement : 
int_hgrp_to_nat: nat(n)
, 
nat_add_mon: <ℕ,+>
, 
int_add_grp: <ℤ+>
, 
hgrp_of_ocgrp: g↓hgrp
, 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
monoid_hom_p: IsMonHom{M1,M2}(f)
, 
and: P ∧ Q
, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_add_mon: <ℕ,+>
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
infix_ap: x f y
, 
grp_id: e
, 
int_hgrp_to_nat: nat(n)
, 
hgrp_of_ocgrp: g↓hgrp
, 
int_add_grp: <ℤ+>
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
implies: P 
⇒ Q
Lemmas referenced : 
le_wf, 
false_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
intformeq_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
int_hgrp_to_nat_wf, 
add_nat_wf, 
int_add_grp_wf2, 
hgrp_of_ocgrp_wf, 
grp_car_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
intEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation
Latex:
IsMonHom\{<\mBbbZ{}+>\mdownarrow{}hgrp,<\mBbbN{},+>\}(\mlambda{}n.nat(n))
Date html generated:
2016_05_15-PM-00_19_39
Last ObjectModification:
2016_01_15-PM-11_05_45
Theory : groups_1
Home
Index