Nuprl Lemma : nat_add_mon_wf

<ℕ,+> ∈ GrpSig


Proof




Definitions occuring in Statement :  nat_add_mon: <ℕ,+> grp_sig: GrpSig member: t ∈ T
Definitions unfolded in proof :  nat_add_mon: <ℕ,+> grp_sig: GrpSig member: t ∈ T uall: [x:A]. B[x] nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  bool_wf false_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties le_int_wf eq_int_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_pairEquality cut lemma_by_obid hypothesis lambdaEquality sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality because_Cache dependent_set_memberEquality addEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll lambdaFormation functionEquality productEquality cumulativity

Latex:
<\mBbbN{},+>  \mmember{}  GrpSig



Date html generated: 2016_05_15-PM-00_17_50
Last ObjectModification: 2016_01_15-PM-11_05_52

Theory : groups_1


Home Index