Nuprl Lemma : maxsegsum_singleton

x:. (max_seg_sum(x;[x])  max_initseg_sum(x;[x]))


Proof




Definitions occuring in Statement :  max_initseg_sum: max_initseg_sum(i;L) max_seg_sum: max_seg_sum(m;L) nil: [] cons: [a / b] all: x:A. B[x] and: P  Q int:
Definitions :  max_seg_sum: max_seg_sum(m;L) and: P  Q prop: member: t  T or: P  Q guard: {T} so_lambda: x.t[x] exists: x:A. B[x] all: x:A. B[x] ge: i  j  le: A  B not: A false: False implies: P  Q lelt: i  j < k int_seg: {i..j} max_initseg_sum: max_initseg_sum(i;L) uall: [x:A]. B[x] so_apply: x[s] uimplies: b supposing a subtype_rel: A r B
Lemmas :  int_subtype_base list_wf equal-wf-base exists_wf list_subtype_base cons_wf nil_wf length_wf int_seg_wf seg_sum_wf ge_wf seg_sum0 initseg_sum0 equal-wf-base-T lelt_wf initseg_sum_wf
\mforall{}x:\mBbbZ{}.  (max\_seg\_sum(x;[x])  \mwedge{}  max\_initseg\_sum(x;[x]))



Date html generated: 2014_03_27-PM-01_47_55
Last ObjectModification: 2013_11_04-AM-10_16_44

Home Index