Nuprl Lemma : Accum-classrel-Memory

[Info,B,A:Type]. ∀[f:A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)]. ∀[X:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:B].
  (v ∈ Accum-class(f;init;X)(e) ⇐⇒ ↓∃a:A. ∃b:B. (a ∈ X(e) ∧ b ∈ Memory-class(f;init;X)(e) ∧ (v (f b) ∈ B)))


Proof




Definitions occuring in Statement :  Memory-class: Memory-class(f;init;X) Accum-class: Accum-class(f;init;X) classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E Id: Id uall: [x:A]. B[x] exists: x:A. B[x] iff: ⇐⇒ Q squash: T and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T bag: bag(T)
Lemmas :  Accum-classrel-Memory-sq squash_wf exists_wf classrel_wf Memory-class_wf eclass_wf es-E_wf event-ordering+_subtype bag-member_wf lifting-2_wf iff_wf Accum-class_wf event-ordering+_wf Id_wf bag_wf bag-member-lifting-2

Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
\mforall{}[v:B].
    (v  \mmember{}  Accum-class(f;init;X)(e)
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}a:A.  \mexists{}b:B.  (a  \mmember{}  X(e)  \mwedge{}  b  \mmember{}  Memory-class(f;init;X)(e)  \mwedge{}  (v  =  (f  a  b))))



Date html generated: 2015_07_22-PM-00_11_27
Last ObjectModification: 2015_01_28-AM-11_41_06

Home Index