Nuprl Lemma : concat-lifting-loc-member
∀[B:Type]. ∀[n:ℕ]. ∀[A:ℕn ─→ Type]. ∀[bags:k:ℕn ─→ bag(A k)]. ∀[f:Id ─→ funtype(n;A;bag(B))]. ∀[b:B]. ∀[l:Id].
  (b ↓∈ concat-lifting-loc(n;bags;l;f)
  
⇐⇒ ↓∃lst:k:ℕn ─→ (A k). ((∀[k:ℕn]. lst k ↓∈ bags k) ∧ b ↓∈ uncurry-rev(n;f l) lst))
Proof
Definitions occuring in Statement : 
concat-lifting-loc: concat-lifting-loc(n;bags;loc;f)
, 
Id: Id
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
natural_number: $n
, 
universe: Type
, 
uncurry-rev: uncurry-rev(n;f)
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
funtype: funtype(n;A;T)
Lemmas : 
concat-lifting-member, 
bag-member_wf, 
concat-lifting-loc_wf, 
squash_wf, 
exists_wf, 
int_seg_wf, 
uall_wf, 
uncurry-rev_wf, 
bag_wf, 
Id_wf, 
funtype_wf, 
nat_wf
Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].  \mforall{}[f:Id  {}\mrightarrow{}  funtype(n;A;bag(B))].
\mforall{}[b:B].  \mforall{}[l:Id].
    (b  \mdownarrow{}\mmember{}  concat-lifting-loc(n;bags;l;f)
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}lst:k:\mBbbN{}n  {}\mrightarrow{}  (A  k).  ((\mforall{}[k:\mBbbN{}n].  lst  k  \mdownarrow{}\mmember{}  bags  k)  \mwedge{}  b  \mdownarrow{}\mmember{}  uncurry-rev(n;f  l)  lst))
Date html generated:
2015_07_22-PM-00_08_02
Last ObjectModification:
2015_01_28-AM-11_42_02
Home
Index