Nuprl Lemma : concat-lifting-member
∀[B:Type]. ∀[n:ℕ]. ∀[A:ℕn ⟶ Type]. ∀[bags:k:ℕn ⟶ bag(A k)]. ∀[f:funtype(n;A;bag(B))]. ∀[b:B].
  (b ↓∈ concat-lifting(n;f;bags) 
⇐⇒ ↓∃lst:k:ℕn ⟶ (A k). ((∀[k:ℕn]. lst k ↓∈ bags k) ∧ b ↓∈ uncurry-rev(n;f) lst))
Proof
Definitions occuring in Statement : 
concat-lifting: concat-lifting(n;f;bags)
, 
uncurry-rev: uncurry-rev(n;f)
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
funtype: funtype(n;A;T)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
concat-lifting: concat-lifting(n;f;bags)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
uncurry-rev: uncurry-rev(n;f)
, 
uncurry-gen: uncurry-gen(n)
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bag-member: x ↓∈ bs
Lemmas referenced : 
nat_wf, 
concat-lifting_wf, 
uncurry-rev_wf, 
uall_wf, 
exists_wf, 
squash_wf, 
concat-lifting-list_wf, 
bag-member_wf, 
add-zero, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
int_seg_wf, 
add-member-int_seg2, 
le_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
decidable__le, 
subtract_wf, 
bag_wf, 
funtype_wf, 
subtype_rel-equal, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
false_wf, 
concat-lifting-list-member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
sqequalRule, 
lambdaFormation, 
hypothesis, 
setElimination, 
rename, 
dependent_functionElimination, 
addEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
applyEquality, 
cumulativity, 
productElimination, 
imageElimination, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
introduction, 
independent_functionElimination, 
functionEquality, 
productEquality, 
universeEquality, 
isect_memberFormation, 
independent_pairEquality
Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].  \mforall{}[f:funtype(n;A;bag(B))].  \mforall{}[b:B].
    (b  \mdownarrow{}\mmember{}  concat-lifting(n;f;bags)
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}lst:k:\mBbbN{}n  {}\mrightarrow{}  (A  k).  ((\mforall{}[k:\mBbbN{}n].  lst  k  \mdownarrow{}\mmember{}  bags  k)  \mwedge{}  b  \mdownarrow{}\mmember{}  uncurry-rev(n;f)  lst))
Date html generated:
2016_05_15-PM-03_06_42
Last ObjectModification:
2016_01_16-AM-08_35_07
Theory : bags
Home
Index