Nuprl Lemma : concat-lifting-member

[B:Type]. ∀[n:ℕ]. ∀[A:ℕn ⟶ Type]. ∀[bags:k:ℕn ⟶ bag(A k)]. ∀[f:funtype(n;A;bag(B))]. ∀[b:B].
  (b ↓∈ concat-lifting(n;f;bags) ⇐⇒ ↓∃lst:k:ℕn ⟶ (A k). ((∀[k:ℕn]. lst k ↓∈ bags k) ∧ b ↓∈ uncurry-rev(n;f) lst))


Proof




Definitions occuring in Statement :  concat-lifting: concat-lifting(n;f;bags) uncurry-rev: uncurry-rev(n;f) bag-member: x ↓∈ bs bag: bag(T) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] exists: x:A. B[x] iff: ⇐⇒ Q squash: T and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  concat-lifting: concat-lifting(n;f;bags) uall: [x:A]. B[x] member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B uiff: uiff(P;Q) subtract: m less_than: a < b squash: T true: True iff: ⇐⇒ Q uncurry-rev: uncurry-rev(n;f) uncurry-gen: uncurry-gen(n) ifthenelse: if then else fi  eq_int: (i =z j) rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] bag-member: x ↓∈ bs
Lemmas referenced :  nat_wf concat-lifting_wf uncurry-rev_wf uall_wf exists_wf squash_wf concat-lifting-list_wf bag-member_wf add-zero int_formula_prop_eq_lemma intformeq_wf decidable__equal_int int_seg_wf add-member-int_seg2 le_wf int_term_value_subtract_lemma itermSubtract_wf decidable__le subtract_wf bag_wf funtype_wf subtype_rel-equal lelt_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf itermAdd_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties false_wf concat-lifting-list-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation sqequalRule lambdaFormation hypothesis setElimination rename dependent_functionElimination addEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality cumulativity productElimination imageElimination functionExtensionality imageMemberEquality baseClosed introduction independent_functionElimination functionEquality productEquality universeEquality isect_memberFormation independent_pairEquality

Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].  \mforall{}[f:funtype(n;A;bag(B))].  \mforall{}[b:B].
    (b  \mdownarrow{}\mmember{}  concat-lifting(n;f;bags)
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}lst:k:\mBbbN{}n  {}\mrightarrow{}  (A  k).  ((\mforall{}[k:\mBbbN{}n].  lst  k  \mdownarrow{}\mmember{}  bags  k)  \mwedge{}  b  \mdownarrow{}\mmember{}  uncurry-rev(n;f)  lst))



Date html generated: 2016_05_15-PM-03_06_42
Last ObjectModification: 2016_01_16-AM-08_35_07

Theory : bags


Home Index