Nuprl Lemma : concat-lifting-list_wf

[B:Type]. ∀[n:ℕ]. ∀[m:ℕ1]. ∀[A:ℕn ⟶ Type]. ∀[bags:k:ℕn ⟶ bag(A k)]. ∀[g:funtype(n m;λx.(A (x m));bag(B))].
  (concat-lifting-list(n;bags) g ∈ bag(B))


Proof




Definitions occuring in Statement :  concat-lifting-list: concat-lifting-list(n;bags) bag: bag(T) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m add: m natural_number: $n universe: Type
Definitions unfolded in proof :  concat-lifting-list: concat-lifting-list(n;bags) uall: [x:A]. B[x] member: t ∈ T nat: int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: uiff: uiff(P;Q) le: A ≤ B less_than: a < b
Lemmas referenced :  nat_wf int_seg_wf lelt_wf decidable__lt add-member-int_seg1 le_wf int_formula_prop_wf int_term_value_add_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermAdd_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties subtract_wf funtype_wf bag_wf lifting-gen-list-rev_wf bag-union_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis cumulativity dependent_set_memberEquality setElimination rename natural_numberEquality addEquality productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality because_Cache functionEquality universeEquality isect_memberFormation introduction axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].
\mforall{}[g:funtype(n  -  m;\mlambda{}x.(A  (x  +  m));bag(B))].
    (concat-lifting-list(n;bags)  m  g  \mmember{}  bag(B))



Date html generated: 2016_05_15-PM-03_05_29
Last ObjectModification: 2016_01_16-AM-08_34_51

Theory : bags


Home Index