Nuprl Lemma : concat-lifting-list-member
∀[B:Type]. ∀[n:ℕ]. ∀[m:ℕn + 1]. ∀[A:ℕn ⟶ Type]. ∀[bags:k:ℕn ⟶ bag(A k)]. ∀[f:funtype(n - m;λx.(A (x + m));bag(B))].
∀[b:B].
  (b ↓∈ concat-lifting-list(n;bags) m f
  
⇐⇒ ↓∃lst:k:{m..n-} ⟶ (A k). ((∀[k:{m..n-}]. lst k ↓∈ bags k) ∧ b ↓∈ uncurry-gen(n) m (λx.f) lst))
Proof
Definitions occuring in Statement : 
concat-lifting-list: concat-lifting-list(n;bags)
, 
uncurry-gen: uncurry-gen(n)
, 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
funtype: funtype(n;A;T)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
bag-member: x ↓∈ bs
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
ge: i ≥ j 
, 
nat: ℕ
, 
guard: {T}
, 
and: P ∧ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sq_type: SQType(T)
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
uncurry-gen: uncurry-gen(n)
, 
concat: concat(ll)
, 
bag-union: bag-union(bbs)
, 
single-bag: {x}
, 
subtract: n - m
, 
lt_int: i <z j
, 
funtype: funtype(n;A;T)
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
true: True
, 
lifting-gen-list-rev: lifting-gen-list-rev(n;bags)
, 
concat-lifting-list: concat-lifting-list(n;bags)
, 
bfalse: ff
, 
nequal: a ≠ b ∈ T 
, 
le: A ≤ B
, 
less_than: a < b
, 
assert: ↑b
, 
bnot: ¬bb
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
gt: i > j
, 
sq_stable: SqStable(P)
, 
istype: istype(T)
, 
less_than': less_than'(a;b)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
nat_wf, 
add-member-int_seg1, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
funtype_wf, 
istype-universe, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
intformless_wf, 
decidable__lt, 
bag_wf, 
uncurry-gen_wf2, 
int_seg_wf, 
uall_wf, 
less_than_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
exists_wf, 
squash_wf, 
concat-lifting-list_wf, 
bag-member_wf, 
subtract-1-ge-0, 
add-member-int_seg2, 
ge_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
bag-subtype-list, 
append_nil_sq, 
reduce_nil_lemma, 
reduce_cons_lemma, 
primrec-unroll, 
iff_weakening_equal, 
subtype_rel_self, 
btrue_wf, 
eq_int_eq_true, 
true_wf, 
equal_wf, 
bool_subtype_base, 
bool_wf, 
bag-combine_wf, 
bag-member-union, 
bfalse_wf, 
eq_int_eq_false, 
lifting-gen-list-rev_wf, 
istype-le, 
istype-less_than, 
funtype-unroll, 
eq_int_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
istype-assert, 
subtype_rel-equal, 
bool_cases, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
bag-member-combine, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_cases_sqequal, 
le_reflexive, 
add-is-int-iff, 
int_seg_subtype, 
btrue_neq_bfalse, 
int_formula_prop_or_lemma, 
intformor_wf, 
decidable__or, 
subtract-add-cancel, 
easy-member-int_seg, 
apply_uncurry, 
eq_int_eq_false_intro, 
apply_larger_list, 
eq_int_eq_true_intro, 
sq_stable__bag-member, 
bag-union_wf, 
single-bag_wf, 
assert_elim, 
add-commutes, 
add-swap, 
minus-one-mul, 
add-associates, 
le-add-cancel, 
add-zero, 
zero-add, 
zero-mul, 
add-mul-special, 
minus-one-mul-top, 
minus-minus, 
minus-add, 
condition-implies-le, 
not-le-2, 
istype-false, 
subtype_rel_dep_function, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
apply_gen_wf
Rules used in proof : 
functionIsTypeImplies, 
independent_pairEquality, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
universeEquality, 
functionIsType, 
inhabitedIsType, 
addEquality, 
productEquality, 
productIsType, 
sqequalRule, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
productElimination, 
dependent_set_memberEquality_alt, 
rename, 
setElimination, 
applyEquality, 
because_Cache, 
functionEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
universeIsType, 
intWeakElimination, 
equalitySymmetry, 
equalityTransitivity, 
cumulativity, 
instantiate, 
intEquality, 
closedConclusion, 
baseApply, 
equalityIsType4, 
isectIsType, 
Error :memTop, 
equalityIstype, 
sqequalBase, 
functionExtensionality_alt, 
promote_hyp, 
equalityElimination, 
applyLambdaEquality, 
hyp_replacement, 
minusEquality, 
multiplyEquality
Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].
\mforall{}[f:funtype(n  -  m;\mlambda{}x.(A  (x  +  m));bag(B))].  \mforall{}[b:B].
    (b  \mdownarrow{}\mmember{}  concat-lifting-list(n;bags)  m  f
    \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}lst:k:\{m..n\msupminus{}\}  {}\mrightarrow{}  (A  k)
                ((\mforall{}[k:\{m..n\msupminus{}\}].  lst  k  \mdownarrow{}\mmember{}  bags  k)  \mwedge{}  b  \mdownarrow{}\mmember{}  uncurry-gen(n)  m  (\mlambda{}x.f)  lst))
Date html generated:
2020_05_20-AM-08_03_32
Last ObjectModification:
2020_02_04-PM-02_19_59
Theory : bags
Home
Index