Nuprl Lemma : bag-member-union

[T:Type]. ∀[x:T]. ∀[bbs:bag(bag(T))].  uiff(x ↓∈ bag-union(bbs);↓∃b:bag(T). (x ↓∈ b ∧ b ↓∈ bbs))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-union: bag-union(bbs) bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: exists: x:A. B[x] and: P ∧ Q implies:  Q sq_stable: SqStable(P) uiff: uiff(P;Q) uimplies: supposing a bag-member: x ↓∈ bs all: x:A. B[x] nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B empty-bag: {} concat: concat(ll) bag-union: bag-union(bbs) bag-append: as bs sq_or: a ↓∨ b iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B cons-bag: x.b rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  bag_to_squash_list bag_wf sq_stable__uiff bag-member_wf bag-union_wf squash_wf sq_stable__bag-member sq_stable__squash uiff_wf istype-universe nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-le list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf istype-nat exists_wf empty-bag_wf bag-member-empty reduce_nil_lemma reduce_cons_lemma sq_or_wf list-subtype-bag cons_wf bag-member-append bag-append_wf bag-member-cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis imageElimination sqequalRule productEquality independent_functionElimination productElimination promote_hyp rename hyp_replacement equalitySymmetry applyLambdaEquality imageMemberEquality baseClosed independent_pairEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeIsType instantiate universeEquality lambdaFormation_alt setElimination intWeakElimination natural_numberEquality independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination voidElimination independent_pairFormation functionIsTypeImplies unionElimination hypothesis_subsumption equalityIstype because_Cache dependent_set_memberEquality_alt equalityTransitivity baseApply closedConclusion applyEquality intEquality sqequalBase lambdaEquality cumulativity isect_memberFormation voidEquality isect_memberEquality productIsType inlFormation_alt inrFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[bbs:bag(bag(T))].    uiff(x  \mdownarrow{}\mmember{}  bag-union(bbs);\mdownarrow{}\mexists{}b:bag(T).  (x  \mdownarrow{}\mmember{}  b  \mwedge{}  b  \mdownarrow{}\mmember{}  bbs))



Date html generated: 2019_10_15-AM-11_01_46
Last ObjectModification: 2019_06_25-PM-03_25_58

Theory : bags


Home Index