Nuprl Lemma : bag-member-union
∀[T:Type]. ∀[x:T]. ∀[bbs:bag(bag(T))].  uiff(x ↓∈ bag-union(bbs);↓∃b:bag(T). (x ↓∈ b ∧ b ↓∈ bbs))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-union: bag-union(bbs)
, 
bag: bag(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
bag-member: x ↓∈ bs
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
or: P ∨ Q
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
empty-bag: {}
, 
concat: concat(ll)
, 
bag-union: bag-union(bbs)
, 
bag-append: as + bs
, 
sq_or: a ↓∨ b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
cons-bag: x.b
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
bag_to_squash_list, 
bag_wf, 
sq_stable__uiff, 
bag-member_wf, 
bag-union_wf, 
squash_wf, 
sq_stable__bag-member, 
sq_stable__squash, 
uiff_wf, 
istype-universe, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-le, 
list_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
istype-nat, 
exists_wf, 
empty-bag_wf, 
bag-member-empty, 
reduce_nil_lemma, 
reduce_cons_lemma, 
sq_or_wf, 
list-subtype-bag, 
cons_wf, 
bag-member-append, 
bag-append_wf, 
bag-member-cons
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
imageElimination, 
sqequalRule, 
productEquality, 
independent_functionElimination, 
productElimination, 
promote_hyp, 
rename, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
independent_pairEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
instantiate, 
universeEquality, 
lambdaFormation_alt, 
setElimination, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
voidElimination, 
independent_pairFormation, 
functionIsTypeImplies, 
unionElimination, 
hypothesis_subsumption, 
equalityIstype, 
because_Cache, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
baseApply, 
closedConclusion, 
applyEquality, 
intEquality, 
sqequalBase, 
lambdaEquality, 
cumulativity, 
isect_memberFormation, 
voidEquality, 
isect_memberEquality, 
productIsType, 
inlFormation_alt, 
inrFormation_alt
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[bbs:bag(bag(T))].    uiff(x  \mdownarrow{}\mmember{}  bag-union(bbs);\mdownarrow{}\mexists{}b:bag(T).  (x  \mdownarrow{}\mmember{}  b  \mwedge{}  b  \mdownarrow{}\mmember{}  bbs))
Date html generated:
2019_10_15-AM-11_01_46
Last ObjectModification:
2019_06_25-PM-03_25_58
Theory : bags
Home
Index