Nuprl Lemma : compose-fpf-dom
∀[A:Type]. ∀[B:A ─→ Type].
∀f:x:A fp-> B[x]
∀[C:Type]
∀a:A ─→ (C?). ∀b:C ─→ A. ∀y:C.
((y ∈ fpf-domain(compose-fpf(a;b;f)))
⇐⇒ ∃x:A. ((x ∈ fpf-domain(f)) ∧ ((↑isl(a x)) c∧ (y = outl(a x) ∈ C))))
Proof
Definitions occuring in Statement :
compose-fpf: compose-fpf(a;b;f)
,
fpf-domain: fpf-domain(f)
,
fpf: a:A fp-> B[a]
,
l_member: (x ∈ l)
,
outl: outl(x)
,
assert: ↑b
,
isl: isl(x)
,
uall: ∀[x:A]. B[x]
,
cand: A c∧ B
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
unit: Unit
,
apply: f a
,
function: x:A ─→ B[x]
,
union: left + right
,
universe: Type
,
equal: s = t ∈ T
Lemmas :
unit_wf2,
fpf_wf,
exists_wf,
l_member_wf,
assert_wf,
isl_wf,
assert_elim,
and_wf,
equal_wf,
bfalse_wf,
btrue_neq_bfalse,
member_map_filter,
outl_wf,
mapfilter_wf,
iff_wf
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type].
\mforall{}f:x:A fp-> B[x]
\mforall{}[C:Type]
\mforall{}a:A {}\mrightarrow{} (C?). \mforall{}b:C {}\mrightarrow{} A. \mforall{}y:C.
((y \mmember{} fpf-domain(compose-fpf(a;b;f)))
\mLeftarrow{}{}\mRightarrow{} \mexists{}x:A. ((x \mmember{} fpf-domain(f)) \mwedge{} ((\muparrow{}isl(a x)) c\mwedge{} (y = outl(a x)))))
Date html generated:
2015_07_17-AM-11_11_46
Last ObjectModification:
2015_01_28-AM-07_44_14
Home
Index