Nuprl Lemma : compose-fpf-dom

[A:Type]. ∀[B:A ─→ Type].
  ∀f:x:A fp-> B[x]
    ∀[C:Type]
      ∀a:A ─→ (C?). ∀b:C ─→ A. ∀y:C.
        ((y ∈ fpf-domain(compose-fpf(a;b;f))) ⇐⇒ ∃x:A. ((x ∈ fpf-domain(f)) ∧ ((↑isl(a x)) c∧ (y outl(a x) ∈ C))))


Proof




Definitions occuring in Statement :  compose-fpf: compose-fpf(a;b;f) fpf-domain: fpf-domain(f) fpf: a:A fp-> B[a] l_member: (x ∈ l) outl: outl(x) assert: b isl: isl(x) uall: [x:A]. B[x] cand: c∧ B so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q unit: Unit apply: a function: x:A ─→ B[x] union: left right universe: Type equal: t ∈ T
Lemmas :  unit_wf2 fpf_wf exists_wf l_member_wf assert_wf isl_wf assert_elim and_wf equal_wf bfalse_wf btrue_neq_bfalse member_map_filter outl_wf mapfilter_wf iff_wf
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}f:x:A  fp->  B[x]
        \mforall{}[C:Type]
            \mforall{}a:A  {}\mrightarrow{}  (C?).  \mforall{}b:C  {}\mrightarrow{}  A.  \mforall{}y:C.
                ((y  \mmember{}  fpf-domain(compose-fpf(a;b;f)))
                \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:A.  ((x  \mmember{}  fpf-domain(f))  \mwedge{}  ((\muparrow{}isl(a  x))  c\mwedge{}  (y  =  outl(a  x)))))



Date html generated: 2015_07_17-AM-11_11_46
Last ObjectModification: 2015_01_28-AM-07_44_14

Home Index