Nuprl Lemma : convergent-flow-order-preserving

[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀f:E(X) ─→ E(X).
    (interface-order-preserving(es;X;f)  global-order-preserving(es;X;f) supposing convergent-flow(es;X;f))


Proof




Definitions occuring in Statement :  convergent-flow: convergent-flow(es;X;f) global-order-preserving: global-order-preserving(es;X;f) interface-order-preserving: interface-order-preserving(es;X;f) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] implies:  Q function: x:A ─→ B[x] universe: Type
Lemmas :  fun-connected-induction all_wf fun-connected_wf Id_wf es-loc_wf event-ordering+_subtype iff_wf es-locl_wf es-E-interface_wf convergent-flow_wf interface-order-preserving_wf subtype_rel_dep_function es-E_wf eclass_wf top_wf event-ordering+_wf decidable__es-E-equal equal_wf es-causl_wf and_wf es-le_weakening_eq es-locl_transitivity2 not_wf es-locl_transitivity1 fun-connected_transitivity decidable__equal_es-E-interface fun-connected-step
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:E(X)  {}\mrightarrow{}  E(X).
        (interface-order-preserving(es;X;f)
        {}\mRightarrow{}  global-order-preserving(es;X;f)  supposing  convergent-flow(es;X;f))



Date html generated: 2015_07_17-PM-00_59_12
Last ObjectModification: 2015_07_16-AM-09_43_41

Home Index