Nuprl Lemma : convergent-flow-order-preserving
∀[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀f:E(X) ─→ E(X).
    (interface-order-preserving(es;X;f) 
⇒ global-order-preserving(es;X;f) supposing convergent-flow(es;X;f))
Proof
Definitions occuring in Statement : 
convergent-flow: convergent-flow(es;X;f)
, 
global-order-preserving: global-order-preserving(es;X;f)
, 
interface-order-preserving: interface-order-preserving(es;X;f)
, 
es-E-interface: E(X)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
fun-connected-induction, 
all_wf, 
fun-connected_wf, 
Id_wf, 
es-loc_wf, 
event-ordering+_subtype, 
iff_wf, 
es-locl_wf, 
es-E-interface_wf, 
convergent-flow_wf, 
interface-order-preserving_wf, 
subtype_rel_dep_function, 
es-E_wf, 
eclass_wf, 
top_wf, 
event-ordering+_wf, 
decidable__es-E-equal, 
equal_wf, 
es-causl_wf, 
and_wf, 
es-le_weakening_eq, 
es-locl_transitivity2, 
not_wf, 
es-locl_transitivity1, 
fun-connected_transitivity, 
decidable__equal_es-E-interface, 
fun-connected-step
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:E(X)  {}\mrightarrow{}  E(X).
        (interface-order-preserving(es;X;f)
        {}\mRightarrow{}  global-order-preserving(es;X;f)  supposing  convergent-flow(es;X;f))
Date html generated:
2015_07_17-PM-00_59_12
Last ObjectModification:
2015_07_16-AM-09_43_41
Home
Index