Step
*
2
1
3
2
of Lemma
eo-forward-trivial
.....set predicate.....
1. Info : Type
2. eo : EO+(Info)
3. e : E
4. ↑first(e)
5. (λx.((eo."dom" x) ∧b (e ≤loc x ∨b(¬bloc(x) = loc(e))))) = eo."dom" ∈ (es-base-E(eo) ─→ 𝔹)
6. eo["dom" := eo."dom"] ∈ {r:eo_record{i:l}()| eo_axioms(r)}
7. eo ∈ {r:eo_record{i:l}()| eo_axioms(r)}
⊢ eo_axioms(eo)
BY
{ ((D 2 THEN Auto) THEN (GenConclTerm ⌈eo⌉⋅ THENA Auto)) }
1
1. Info : Type
2. eo : self:EO ∩ x:Atom ─→ if x =a "info" then es-base-E(self) ─→ Info else Top fi
3. eo ∈ EO
4. e : E
5. ↑first(e)
6. (λx.((eo."dom" x) ∧b (e ≤loc x ∨b(¬bloc(x) = loc(e))))) = eo."dom" ∈ (es-base-E(eo) ─→ 𝔹)
7. eo["dom" := eo."dom"] ∈ {r:eo_record{i:l}()| eo_axioms(r)}
8. eo ∈ {r:eo_record{i:l}()| eo_axioms(r)}
9. eo."info" ∈ es-base-E(eo) ─→ Info
10. v : {r:eo_record{i:l}()| eo_axioms(r)} @i'
11. eo = v ∈ {r:eo_record{i:l}()| eo_axioms(r)} @i'
⊢ eo_axioms(v)
Latex:
.....set predicate.....
1. Info : Type
2. eo : EO+(Info)
3. e : E
4. \muparrow{}first(e)
5. (\mlambda{}x.((eo."dom" x) \mwedge{}\msubb{} (e \mleq{}loc x \mvee{}\msubb{}(\mneg{}\msubb{}loc(x) = loc(e))))) = eo."dom"
6. eo["dom" := eo."dom"] \mmember{} \{r:eo\_record\{i:l\}()| eo\_axioms(r)\}
7. eo \mmember{} \{r:eo\_record\{i:l\}()| eo\_axioms(r)\}
\mvdash{} eo\_axioms(eo)
By
((D 2 THEN Auto) THEN (GenConclTerm \mkleeneopen{}eo\mkleeneclose{}\mcdot{} THENA Auto))
Home
Index