Nuprl Lemma : fpf-cap-subtype_functionality_wrt_sub

[A:Type]. ∀[d1,d2,d4:EqDecider(A)]. ∀[f,g:a:A fp-> Type]. ∀[x:A].  {g(x)?Top ⊆f(x)?Top supposing f ⊆ g}


Proof




Definitions occuring in Statement :  fpf-sub: f ⊆ g fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top guard: {T} universe: Type
Lemmas :  decidable__assert fpf-dom_wf subtype-fpf2 top_wf subtype_top fpf-sub_wf fpf_wf deq_wf subtype_rel_self fpf-cap_wf subtype_rel_wf fpf-cap_functionality_wrt_sub bool_wf equal-wf-T-base assert_wf bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot fpf-dom_functionality2
\mforall{}[A:Type].  \mforall{}[d1,d2,d4:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  Type].  \mforall{}[x:A].
    \{g(x)?Top  \msubseteq{}r  f(x)?Top  supposing  f  \msubseteq{}  g\}



Date html generated: 2015_07_17-AM-09_18_20
Last ObjectModification: 2015_01_28-AM-07_50_55

Home Index