Nuprl Lemma : fpf-cap-wf-univ

[A:Type]. ∀[f:a:A fp-> Type]. ∀[eq:EqDecider(A)]. ∀[x:A]. ∀[z:Type].  (f(x)?z ∈ Type)


Proof




Definitions occuring in Statement :  fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Lemmas :  deq_wf fpf_wf fpf-dom_wf subtype-fpf2 top_wf subtype_top bool_wf fpf-ap_wf equal-wf-T-base assert_wf bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot
\mforall{}[A:Type].  \mforall{}[f:a:A  fp->  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x:A].  \mforall{}[z:Type].    (f(x)?z  \mmember{}  Type)



Date html generated: 2015_07_17-AM-09_16_26
Last ObjectModification: 2015_01_28-AM-07_51_55

Home Index