Nuprl Lemma : fpf-cap_functionality

[A:Type]. ∀[d1,d2:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[f:a:A fp-> B[a]]. ∀[x:A]. ∀[z:B[x]].  (f(x)?z f(x)?z ∈ B[x])


Proof




Definitions occuring in Statement :  fpf-cap: f(x)?z fpf: a:A fp-> B[a] deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  fpf-dom_wf subtype-fpf2 top_wf subtype_top bool_wf fpf-ap_wf equal-wf-T-base assert_wf bnot_wf not_wf fpf_ap_pair_lemma assert-deq-member l_member_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot fpf_wf deq_wf
\mforall{}[A:Type].  \mforall{}[d1,d2:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[x:A].  \mforall{}[z:B[x]].
    (f(x)?z  =  f(x)?z)



Date html generated: 2015_07_17-AM-09_17_59
Last ObjectModification: 2015_01_28-AM-07_50_22

Home Index