Nuprl Lemma : fpf-compatible-singles-iff

[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[x,y:A]. ∀[v:B[x]]. ∀[u:B[y]].
  uiff(x || u;v u ∈ B[x] supposing y ∈ A)


Proof




Definitions occuring in Statement :  fpf-single: v fpf-compatible: || g deq: EqDecider(T) uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  fpf_ap_single_lemma fpf-single-dom equal_wf fpf-compatible_wf fpf-single_wf fpf-compatible-singles assert_wf fpf-dom_wf top_wf isect_wf subtype_rel_self subtype_rel_wf deq_wf
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[x,y:A].  \mforall{}[v:B[x]].  \mforall{}[u:B[y]].
    uiff(x  :  v  ||  y  :  u;v  =  u  supposing  x  =  y)



Date html generated: 2015_07_17-AM-11_13_01
Last ObjectModification: 2015_01_28-AM-07_43_18

Home Index