Nuprl Lemma : fpf-compatible-singles

[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[x,y:A]. ∀[v:B[x]]. ∀[u:B[y]].
  || supposing (x y ∈ A)  (v u ∈ B[x])


Proof




Definitions occuring in Statement :  fpf-single: v fpf-compatible: || g deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] implies:  Q function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  assert_wf fpf-dom_wf fpf-single_wf top_wf subtype_rel_self subtype_rel_wf deq_wf fpf_ap_pair_lemma deq_member_cons_lemma deq_member_nil_lemma bor_wf bfalse_wf eqof_wf or_wf equal_wf false_wf iff_transitivity iff_weakening_uiff assert_of_bor safe-assert-deq equal_functionality_wrt_subtype_rel2
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[x,y:A].  \mforall{}[v:B[x]].  \mforall{}[u:B[y]].
    x  :  v  ||  y  :  u  supposing  (x  =  y)  {}\mRightarrow{}  (v  =  u)



Date html generated: 2015_07_17-AM-11_12_37
Last ObjectModification: 2015_01_28-AM-07_43_13

Home Index