Nuprl Lemma : fpf-compatible-singles-trivial

[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:Top]. ∀[x,y:A]. ∀[v,u:Top].  || supposing ¬(x y ∈ A)


Proof




Definitions occuring in Statement :  fpf-single: v fpf-compatible: || g deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] not: ¬A universe: Type equal: t ∈ T
Lemmas :  deq_member_cons_lemma deq_member_nil_lemma assert_wf fpf-dom_wf fpf-single_wf bor_wf eqof_wf bfalse_wf or_wf equal_wf false_wf top_wf not_wf deq_wf iff_transitivity iff_weakening_uiff assert_of_bor safe-assert-deq
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:Top].  \mforall{}[x,y:A].  \mforall{}[v,u:Top].    x  :  v  ||  y  :  u  supposing  \mneg{}(x  =  y)



Date html generated: 2015_07_17-AM-11_12_40
Last ObjectModification: 2015_01_28-AM-07_42_44

Home Index