Nuprl Lemma : fpf-sub-val3
∀[A:Type]. ∀[B,C:A ─→ Type].
∀eq:EqDecider(A). ∀f:a:A fp-> B[a]. ∀g:a:A fp-> C[a]. ∀x:A.
∀[P:a:A ─→ B[a] ─→ ℙ]. ∀[Q:a:A ─→ C[a] ─→ ℙ].
((∀x:A. ((C[x] ⊆r B[x]) c∧ (P[x;g(x)]
⇒ Q[x;g(x)])) supposing ((↑x ∈ dom(f)) and (↑x ∈ dom(g))))
⇒ {z != f(x) ==> P[y;z]
⇒ z != g(x) ==> Q[y;z] supposing g ⊆ f})
Proof
Definitions occuring in Statement :
fpf-sub: f ⊆ g
,
fpf-val: z != f(x) ==> P[a; z]
,
fpf-ap: f(x)
,
fpf-dom: x ∈ dom(f)
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
assert: ↑b
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
cand: A c∧ B
,
prop: ℙ
,
guard: {T}
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ─→ B[x]
,
universe: Type
Lemmas :
subtype_base_sq,
fpf-dom_wf,
assert_wf,
top_wf,
subtype_top,
subtype-fpf2,
fpf_wf,
cand_wf,
all_wf,
fpf-ap_wf,
assert_witness,
subtype_rel_wf,
deq_wf,
equal-wf-base,
equal-wf-base-T,
equal-wf-T-base,
isect_wf
\mforall{}[A:Type]. \mforall{}[B,C:A {}\mrightarrow{} Type].
\mforall{}eq:EqDecider(A). \mforall{}f:a:A fp-> B[a]. \mforall{}g:a:A fp-> C[a]. \mforall{}x:A.
\mforall{}[P:a:A {}\mrightarrow{} B[a] {}\mrightarrow{} \mBbbP{}]. \mforall{}[Q:a:A {}\mrightarrow{} C[a] {}\mrightarrow{} \mBbbP{}].
((\mforall{}x:A
((C[x] \msubseteq{}r B[x]) c\mwedge{} (P[x;g(x)] {}\mRightarrow{} Q[x;g(x)])) supposing ((\muparrow{}x \mmember{} dom(f)) and (\muparrow{}x \mmember{} dom(g))))
{}\mRightarrow{} \{z != f(x) ==> P[y;z] {}\mRightarrow{} z != g(x) ==> Q[y;z] supposing g \msubseteq{} f\})
Date html generated:
2015_07_17-AM-11_08_05
Last ObjectModification:
2015_01_28-AM-07_47_37
Home
Index