Nuprl Lemma : fpf-val-single1

[A:Type]. ∀[eq:EqDecider(A)]. ∀[x:A]. ∀[v,P:Top].  (z != v(x) ==> P[a;z] True  P[x;v])


Proof




Definitions occuring in Statement :  fpf-single: v fpf-val: != f(x) ==> P[a; z] deq: EqDecider(T) uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] implies:  Q true: True universe: Type sqequal: t
Lemmas :  fpf_ap_pair_lemma deq_member_cons_lemma deq_member_nil_lemma bool_wf uiff_transitivity equal-wf-T-base assert_wf equal_wf eqtt_to_assert safe-assert-deq iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot top_wf deq_wf
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x:A].  \mforall{}[v,P:Top].    (z  !=  x  :  v(x)  ==>  P[a;z]  \msim{}  True  {}\mRightarrow{}  P[x;v])



Date html generated: 2015_07_17-AM-11_09_03
Last ObjectModification: 2015_01_28-AM-07_45_08

Home Index