Nuprl Lemma : information-flow-to_wf
∀[Info,T:Type]. ∀[S:Id List]. ∀[F:information-flow(T;S)]. ∀[es:EO+(Info)]. ∀[X:EClass(T)].
  ∀[i:{i:Id| (i ∈ S)} ]. ∀[e:E(X)].  information-flow-to(es;X;F;e;i) ∈ T supposing information-flow-relation(es;X;F;e;i)\000C 
  supposing es-interface-locs-list(es;X;S)
Proof
Definitions occuring in Statement : 
information-flow-to: information-flow-to(es;X;F;e;i)
, 
information-flow-relation: information-flow-relation(es;X;F;e;i)
, 
es-interface-locs-list: es-interface-locs-list(es;X;S)
, 
es-E-interface: E(X)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
information-flow: information-flow(T;S)
, 
Id: Id
, 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
universe: Type
Lemmas : 
do-apply_wf, 
list_wf, 
less_than_wf, 
length_wf, 
l_member_wf, 
Id_wf, 
assert_wf, 
can-apply_wf, 
subtype_rel_dep_function, 
top_wf, 
subtype_rel_sum, 
set_wf
Latex:
\mforall{}[Info,T:Type].  \mforall{}[S:Id  List].  \mforall{}[F:information-flow(T;S)].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(T)].
    \mforall{}[i:\{i:Id|  (i  \mmember{}  S)\}  ].  \mforall{}[e:E(X)].
        information-flow-to(es;X;F;e;i)  \mmember{}  T  supposing  information-flow-relation(es;X;F;e;i) 
    supposing  es-interface-locs-list(es;X;S)
Date html generated:
2015_07_20-PM-03_53_45
Last ObjectModification:
2015_01_27-PM-09_59_06
Home
Index