Nuprl Lemma : information-flow-to_wf

[Info,T:Type]. ∀[S:Id List]. ∀[F:information-flow(T;S)]. ∀[es:EO+(Info)]. ∀[X:EClass(T)].
  ∀[i:{i:Id| (i ∈ S)} ]. ∀[e:E(X)].  information-flow-to(es;X;F;e;i) ∈ supposing information-flow-relation(es;X;F;e;i)\000C 
  supposing es-interface-locs-list(es;X;S)


Proof




Definitions occuring in Statement :  information-flow-to: information-flow-to(es;X;F;e;i) information-flow-relation: information-flow-relation(es;X;F;e;i) es-interface-locs-list: es-interface-locs-list(es;X;S) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) information-flow: information-flow(T;S) Id: Id l_member: (x ∈ l) list: List uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  universe: Type
Lemmas :  do-apply_wf list_wf less_than_wf length_wf l_member_wf Id_wf assert_wf can-apply_wf subtype_rel_dep_function top_wf subtype_rel_sum set_wf

Latex:
\mforall{}[Info,T:Type].  \mforall{}[S:Id  List].  \mforall{}[F:information-flow(T;S)].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(T)].
    \mforall{}[i:\{i:Id|  (i  \mmember{}  S)\}  ].  \mforall{}[e:E(X)].
        information-flow-to(es;X;F;e;i)  \mmember{}  T  supposing  information-flow-relation(es;X;F;e;i) 
    supposing  es-interface-locs-list(es;X;S)



Date html generated: 2015_07_20-PM-03_53_45
Last ObjectModification: 2015_01_27-PM-09_59_06

Home Index