Nuprl Lemma : hdf-parallel-bind-eq-gen
∀[A,B1,B2,C:Type]. ∀[X1:hdataflow(A;B1)]. ∀[X2:hdataflow(A;B2)]. ∀[Y1:B1 ─→ hdataflow(A;C)]. ∀[Y2:B2 ─→ hdataflow(A;C)].
  (X1 >>= Y1 || X2 >>= Y2 = X1 + X2 >>= λb.case b of inl(b1) => Y1 b1 | inr(b2) => Y2 b2 ∈ hdataflow(A;C)) supposing 
     (valueall-type(C) and 
     valueall-type(B2) and 
     valueall-type(B1))
Proof
Definitions occuring in Statement : 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ─→ B[x]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
universe: Type
, 
equal: s = t ∈ T
, 
hdf-bind: X >>= Y
, 
hdf-union: X + Y
, 
hdf-parallel: X || Y
, 
hdataflow: hdataflow(A;B)
Lemmas : 
parallel-bind-program-eq-gen, 
Id_wf, 
hdataflow_wf, 
hdf-bind_wf, 
squash_wf, 
valueall-type_wf, 
hdf-parallel_wf, 
hdf-compose1_wf, 
union-valueall-type, 
hdf-union-eq-disju, 
iff_weakening_equal, 
equal_wf, 
hdf-union_wf
Latex:
\mforall{}[A,B1,B2,C:Type].  \mforall{}[X1:hdataflow(A;B1)].  \mforall{}[X2:hdataflow(A;B2)].  \mforall{}[Y1:B1  {}\mrightarrow{}  hdataflow(A;C)].
\mforall{}[Y2:B2  {}\mrightarrow{}  hdataflow(A;C)].
    (X1  >>=  Y1  ||  X2  >>=  Y2  =  X1  +  X2  >>=  \mlambda{}b.case  b  of  inl(b1)  =>  Y1  b1  |  inr(b2)  =>  Y2  b2)  supposing 
          (valueall-type(C)  and 
          valueall-type(B2)  and 
          valueall-type(B1))
Date html generated:
2015_07_22-PM-00_05_58
Last ObjectModification:
2015_02_04-PM-05_09_21
Home
Index