Nuprl Lemma : hdf-parallel-bind-eq-gen

[A,B1,B2,C:Type]. ∀[X1:hdataflow(A;B1)]. ∀[X2:hdataflow(A;B2)]. ∀[Y1:B1 ─→ hdataflow(A;C)]. ∀[Y2:B2 ─→ hdataflow(A;C)].
  (X1 >>Y1 || X2 >>Y2 X1 X2 >>= λb.case of inl(b1) => Y1 b1 inr(b2) => Y2 b2 ∈ hdataflow(A;C)) supposing 
     (valueall-type(C) and 
     valueall-type(B2) and 
     valueall-type(B1))


Proof




Definitions occuring in Statement :  valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ─→ B[x] decide: case of inl(x) => s[x] inr(y) => t[y] universe: Type equal: t ∈ T hdf-bind: X >>Y hdf-union: Y hdf-parallel: || Y hdataflow: hdataflow(A;B)
Lemmas :  parallel-bind-program-eq-gen Id_wf hdataflow_wf hdf-bind_wf squash_wf valueall-type_wf hdf-parallel_wf hdf-compose1_wf union-valueall-type hdf-union-eq-disju iff_weakening_equal equal_wf hdf-union_wf

Latex:
\mforall{}[A,B1,B2,C:Type].  \mforall{}[X1:hdataflow(A;B1)].  \mforall{}[X2:hdataflow(A;B2)].  \mforall{}[Y1:B1  {}\mrightarrow{}  hdataflow(A;C)].
\mforall{}[Y2:B2  {}\mrightarrow{}  hdataflow(A;C)].
    (X1  >>=  Y1  ||  X2  >>=  Y2  =  X1  +  X2  >>=  \mlambda{}b.case  b  of  inl(b1)  =>  Y1  b1  |  inr(b2)  =>  Y2  b2)  supposing 
          (valueall-type(C)  and 
          valueall-type(B2)  and 
          valueall-type(B1))



Date html generated: 2015_07_22-PM-00_05_58
Last ObjectModification: 2015_02_04-PM-05_09_21

Home Index