Nuprl Lemma : hdf-union_wf
∀[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)].
  (X + Y ∈ hdataflow(A;B + C)) supposing (valueall-type(B) and valueall-type(C))
Proof
Definitions occuring in Statement : 
hdf-union: X + Y
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
union: left + right
, 
universe: Type
Lemmas : 
valueall-type_wf, 
hdataflow_wf, 
hdf-halted_wf, 
bool_wf, 
eqtt_to_assert, 
mk-hdf_wf, 
hdf-ap_wf, 
bag_wf, 
bag-append_wf, 
bag-map_wf, 
evalall-reduce, 
bag-valueall-type, 
union-valueall-type, 
valueall-type-has-valueall
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].
    (X  +  Y  \mmember{}  hdataflow(A;B  +  C))  supposing  (valueall-type(B)  and  valueall-type(C))
Date html generated:
2015_07_17-AM-08_06_32
Last ObjectModification:
2015_01_27-PM-00_17_03
Home
Index