Nuprl Lemma : hdf-union_wf

[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)].
  (X Y ∈ hdataflow(A;B C)) supposing (valueall-type(B) and valueall-type(C))


Proof




Definitions occuring in Statement :  hdf-union: Y hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T union: left right universe: Type
Lemmas :  valueall-type_wf hdataflow_wf hdf-halted_wf bool_wf eqtt_to_assert mk-hdf_wf hdf-ap_wf bag_wf bag-append_wf bag-map_wf evalall-reduce bag-valueall-type union-valueall-type valueall-type-has-valueall
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].
    (X  +  Y  \mmember{}  hdataflow(A;B  +  C))  supposing  (valueall-type(B)  and  valueall-type(C))



Date html generated: 2015_07_17-AM-08_06_32
Last ObjectModification: 2015_01_27-PM-00_17_03

Home Index