Nuprl Lemma : parallel-class-program-eq
∀[Info,B:Type].
  ∀[X,Y:EClass(B)]. ∀[Xpr1,Xpr2:LocalClass(X)]. ∀[Ypr1,Ypr2:LocalClass(Y)].
    (Xpr1 || Ypr1 = Xpr2 || Ypr2 ∈ (Id ─→ hdataflow(Info;B))) supposing 
       ((Xpr1 = Xpr2 ∈ (Id ─→ hdataflow(Info;B))) and 
       (Ypr1 = Ypr2 ∈ (Id ─→ hdataflow(Info;B)))) 
  supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
parallel-class-program: X || Y
, 
local-class: LocalClass(X)
, 
eclass: EClass(A[eo; e])
, 
Id: Id
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
hdataflow: hdataflow(A;B)
Lemmas : 
parallel-class-program_wf, 
bag_wf, 
hdf-ap_wf, 
iterate-hdataflow_wf, 
es-loc_wf, 
event-ordering+_subtype, 
map_wf, 
es-E_wf, 
es-info_wf, 
es-before_wf, 
hdataflow_wf, 
iff_weakening_equal, 
all_wf, 
equal_wf, 
class-ap_wf, 
local-class_wf, 
parallel-class_wf, 
Id_wf, 
valueall-type_wf, 
and_wf, 
pi2_wf
Latex:
\mforall{}[Info,B:Type].
    \mforall{}[X,Y:EClass(B)].  \mforall{}[Xpr1,Xpr2:LocalClass(X)].  \mforall{}[Ypr1,Ypr2:LocalClass(Y)].
        (Xpr1  ||  Ypr1  =  Xpr2  ||  Ypr2)  supposing  ((Xpr1  =  Xpr2)  and  (Ypr1  =  Ypr2)) 
    supposing  valueall-type(B)
Date html generated:
2015_07_22-PM-00_03_55
Last ObjectModification:
2015_02_04-PM-05_09_47
Home
Index