Nuprl Lemma : st-length-encrypt
∀[T:Id ─→ Type]. ∀[tab:secret-table(T)]. ∀[keyv:ℕ + Atom1 × data(T)].  (||encrypt(tab;keyv)||  = ||tab||  ∈ ℤ)
Proof
Definitions occuring in Statement : 
st-encrypt: encrypt(tab;keyv)
, 
st-length: ||tab|| 
, 
secret-table: secret-table(T)
, 
data: data(T)
, 
Id: Id
, 
nat: ℕ
, 
atom: Atom$n
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
union: left + right
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
nat_wf, 
data_wf, 
lt_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
less_than_wf, 
st-length_wf, 
int_seg_wf, 
le_int_wf, 
le_wf, 
bnot_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int
\mforall{}[T:Id  {}\mrightarrow{}  Type].  \mforall{}[tab:secret-table(T)].  \mforall{}[keyv:\mBbbN{}  +  Atom1  \mtimes{}  data(T)].
    (||encrypt(tab;keyv)||    =  ||tab||  )
Date html generated:
2015_07_17-AM-08_57_20
Last ObjectModification:
2015_01_27-PM-01_04_29
Home
Index