Nuprl Lemma : mk-tagged_wf_pCom_new

[M:Type ─→ Type]
  ∀[Q:Type]. ∀[m:Unit]. (mk-tagged("new";m) ∈ Com(P.M[P]) Q) supposing Process(P.M[P]) ⊆supposing Monotone(T.M[T])


Proof




Definitions occuring in Statement :  Process: Process(P.M[P]) Com: Com(P.M[P]) type-monotone: Monotone(T.F[T]) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] unit: Unit member: t ∈ T apply: a function: x:A ─→ B[x] token: "$token" universe: Type mk-tagged: mk-tagged(tg;x)
Lemmas :  mk-tagged_wf_unequal assert_of_eq_atom iff_transitivity not_wf equal-wf-base false_wf true_wf iff_weakening_uiff assert_of_bnot bfalse_wf Id_wf mk-tagged_wf unit_wf2 bool_wf subtype_rel_wf Process_wf type-monotone_wf

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[Q:Type].  \mforall{}[m:Unit].  (mk-tagged("new";m)  \mmember{}  Com(P.M[P])  Q)  supposing  Process(P.M[P])  \msubseteq{}r  Q 
    supposing  Monotone(T.M[T])



Date html generated: 2015_07_23-AM-11_06_54
Last ObjectModification: 2015_01_29-AM-00_10_26

Home Index