Nuprl Lemma : mk-tagged_wf

[B:Type]. ∀[tg:Atom]. ∀[x:B].  (mk-tagged(tg;x) ∈ tg:B)


Proof




Definitions occuring in Statement :  mk-tagged: mk-tagged(tg;x) tag-case: z:T uall: [x:A]. B[x] member: t ∈ T atom: Atom universe: Type
Definitions unfolded in proof :  tag-case: z:T uall: [x:A]. B[x] member: t ∈ T mk-tagged: mk-tagged(tg;x) subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  not: ¬A
Lemmas referenced :  subtype_rel-equal ifthenelse_wf eq_atom_wf top_wf eqtt_to_assert assert_of_eq_atom eqff_to_assert equal_wf bool_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut dependent_pairEquality hypothesisEquality applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin instantiate hypothesis universeEquality cumulativity independent_isectElimination because_Cache lambdaFormation unionElimination equalityElimination productElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination independent_functionElimination voidElimination axiomEquality isect_memberEquality atomEquality

Latex:
\mforall{}[B:Type].  \mforall{}[tg:Atom].  \mforall{}[x:B].    (mk-tagged(tg;x)  \mmember{}  tg:B)



Date html generated: 2018_05_21-PM-08_42_40
Last ObjectModification: 2017_07_26-PM-06_06_32

Theory : general


Home Index