Nuprl Lemma : mk-tagged_wf_unequal

[B:Type]. ∀[tg,a:Atom].  ∀[x:Top]. (mk-tagged(a;x) ∈ tg:B) supposing ¬(tg a ∈ Atom)


Proof




Definitions occuring in Statement :  mk-tagged: mk-tagged(tg;x) tag-case: z:T uimplies: supposing a uall: [x:A]. B[x] top: Top not: ¬A member: t ∈ T atom: Atom universe: Type equal: t ∈ T
Definitions unfolded in proof :  tag-case: z:T uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a mk-tagged: mk-tagged(tg;x) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  not: ¬A false: False bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtype_rel: A ⊆B
Lemmas referenced :  eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom top_wf not_wf equal-wf-base atom_subtype_base
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut dependent_pairEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaFormation unionElimination equalityElimination because_Cache productElimination independent_isectElimination independent_functionElimination equalitySymmetry voidElimination dependent_pairFormation equalityTransitivity promote_hyp dependent_functionElimination instantiate cumulativity axiomEquality isect_memberEquality atomEquality applyEquality universeEquality

Latex:
\mforall{}[B:Type].  \mforall{}[tg,a:Atom].    \mforall{}[x:Top].  (mk-tagged(a;x)  \mmember{}  tg:B)  supposing  \mneg{}(tg  =  a)



Date html generated: 2018_05_21-PM-08_42_26
Last ObjectModification: 2017_07_26-PM-06_06_18

Theory : general


Home Index