Nuprl Lemma : vr_divK

n:. k:.  (((k * n)  k) = n)


Proof not projected




Definitions occuring in Statement :  nat_plus: nat: all: x:A. B[x] divide: n  m multiply: n * m int: equal: s = t
Definitions :  tactic: Error :tactic,  THENA: Error :THENA,  Auto: Error :Auto,  all: x:A. B[x] function: x:A  B[x] nat_plus: nat: member: t  T equal: s = t subtract: n - m add: n + m minus: -n prop: uall: [x:A]. B[x] isect: x:A. B[x] int: subtype: S  T int_nzero: real: less_than: a < b implies: P  Q le: A  B ge: i  j  multiply: n * m divide: n  m set: {x:A| B[x]}  nequal: a  b  T  not: A false: False void: Void natural_number: $n rev_implies: P  Q product: x:A  B[x] and: P  Q iff: P  Q rationals: uimplies: b supposing a subtype_rel: A r B uiff: uiff(P;Q) strong-subtype: strong-subtype(A;B) universe: Type p-outcome: Outcome length: ||as|| D: Error :D,  exists: x:A. B[x] THEN: Error :THEN,  limited-type: LimitedType grp_car: |g| squash: T true: True sq_type: SQType(T) guard: {T}
Lemmas :  int_subtype_base subtype_base_sq nat_plus_inc true_wf squash_wf mul_bounds_1a nat_plus_properties div_rec_case le_wf member_wf false_wf not_wf div_base_case zero_ann rev_implies_wf iff_wf nat_ind_tp nat_properties ge_wf nat_wf nat_plus_wf

\mforall{}n:\mBbbN{}.  \mforall{}k:\mBbbN{}\msupplus{}.    (((k  *  n)  \mdiv{}  k)  =  n)


Date html generated: 2012_02_20-PM-03_31_55
Last ObjectModification: 2012_02_02-PM-01_55_03

Home Index