Nuprl Lemma : SM-gen-tr_wf

[S:Type]. [n:]. [m:{1..n + 1}]. [A:k:{m..n + 1}  Type]. [btrs:k:{m..n + 1}  (bag(A k)  (Id
                                                                                                       A k
                                                                                                       S
                                                                                                       S))].
[bp:bag(S)]. [l:Id].
  (SM-gen-tr(l;btrs;bp;n;m)  bag(S))


Proof not projected




Definitions occuring in Statement :  SM-gen-tr: SM-gen-tr(l;btrs;bp;n;m) Id: Id int_seg: {i..j} nat_plus: uall: [x:A]. B[x] member: t  T apply: f a function: x:A  B[x] product: x:A  B[x] add: n + m natural_number: $n universe: Type bag: bag(T)
Definitions :  member: t  T lelt: i  j < k exists: x:A. B[x] and: P  Q prop: all: x:A. B[x] implies: P  Q le: A  B not: A false: False ge: i  j  int_seg: {i..j} SM-gen-tr: SM-gen-tr(l;btrs;bp;n;m) guard: {T} ycomb: Y ifthenelse: if b then t else f fi  btrue: tt iff: P  Q assert: b top: Top subtype: S  T rev_implies: P  Q or: P  Q true: True so_lambda: x.t[x] squash: T suptype: suptype(S; T) bfalse: ff nat_plus: uall: [x:A]. B[x] nat: sq_type: SQType(T) uimplies: b supposing a so_apply: x[s] bool: unit: Unit uiff: uiff(P;Q) label: ...$L... t it:
Lemmas :  int_seg_properties subtype_base_sq int_subtype_base int_seg_wf bag_wf Id_wf le_wf nat_plus_wf nat_properties ge_wf bool_wf bool_subtype_base iff_imp_equal_bool bor_wf bnot_wf bag-null_wf pi1_wf_top btrue_wf iff_functionality_wrt_iff assert_wf not_wf empty-bag_wf true_wf iff_weakening_uiff uiff_transitivity assert_of_bor or_functionality_wrt_uiff2 decidable__assert assert_of_bnot not_functionality_wrt_uiff assert-bag-null lifting-loc-2_wf pi2_wf eq_int_eq_true nat_plus_properties member_wf squash_wf bor-btrue eq_int_wf bfalse_wf false_wf assert_of_eq_int bor-bfalse eqtt_to_assert eqff_to_assert

\mforall{}[S:Type].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[m:\{1..n  +  1\msupminus{}\}].  \mforall{}[A:k:\{m..n  +  1\msupminus{}\}  {}\mrightarrow{}  Type].
\mforall{}[btrs:k:\{m..n  +  1\msupminus{}\}  {}\mrightarrow{}  (bag(A  k)  \mtimes{}  (Id  {}\mrightarrow{}  A  k  {}\mrightarrow{}  S  {}\mrightarrow{}  S))].  \mforall{}[bp:bag(S)].  \mforall{}[l:Id].
    (SM-gen-tr(l;btrs;bp;n;m)  \mmember{}  bag(S))


Date html generated: 2011_10_20-PM-03_34_38
Last ObjectModification: 2011_08_17-AM-00_37_40

Home Index